IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 2021-10-23 -> 正文阅读

[人工智能]2021-10-23

猫狗大赛代码

1 引入头文件

import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json
import rarfile #关于.rar文件的解压额外包


# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

2 下载数据集并解压

pip install rarfile
! wget https://static.leiphone.com/cat_dog.rar
! unrar x'cat_dog.rar

3.创建模型

#第一次要下载模型
!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json

在这里插入图片描述

model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

在这里插入图片描述

#修改最后一层,冻结前面层的参数
print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

在这里插入图片描述

4. 模型训练

模型训练
SGD改成了Adam,epochs修改到了100,把acc最高的model保留,把最后一轮的model保留。

from tqdm import trange,tqdm
criterion = nn.NLLLoss()
lr = 0.001
optimizer_vgg = torch.optim.Adam(model_vgg_new.classifier[6].parameters(), lr=lr)
 
def train_model(model, dataloader, size, epochs=200, optimizer=None):
    model.train()
    max_acc = 0
    count = 0
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs, classes in tqdm(dataloader):
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, classes)
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _, preds = torch.max(outputs.data, 1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            #print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        if epoch_acc>max_acc:
            max_acc = epoch_acc
            torch.save(model, '/content/drive/My Drive/model_best_new.pth')
            tqdm.write("\n model Acc:{:.8f}".format(max_acc))
        tqdm.write('\nepoch: {} \tLoss: {:.8f} Acc: {:.8f}'.format(epoch,epoch_loss, epoch_acc))
        time.sleep(0.1)
 
    torch.save(model, '/content/drive/My Drive/model_last_new.pth')
   
# 模型训练
train_model(model_vgg_new, loader_train, size=dset_sizes["train"], epochs=100,
            optimizer=optimizer_vgg)

在这里插入图片描述
通过valid测试,训练中产生的ACC为1的最佳模型得到结果正确率为98.1%
测试代码:

import torch
import numpy as np
from torchvision import transforms,datasets
from tqdm import tqdm
device = torch.device("cuda:0" )
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])
 
dsets_mine = datasets.ImageFolder(r"/content/cat_dog/cat_dog/test", vgg_format)
 
loader_test = torch.utils.data.DataLoader(dsets_mine, batch_size=1, shuffle=False, num_workers=0)
 
model_vgg_new = torch.load(r'/content/drive/MyDrive/model_last_new.pth')
model_vgg_new = model_vgg_new.to(device)

dic = {
    }
def test(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    cnt = 0
    for inputs,_ in tqdm(dataloader):
        inputs = inputs.to(device)
        outputs = model(inputs)
        _,preds = torch.max(outputs.data,1)    
        key = dsets_mine.imgs[cnt][0].split("\\")[-1].split('.')[0]
        dic[key] = preds[0]
        cnt = cnt +1
test(model_vgg_new,loader_test,size=2000)

with open("result1.csv",'a+') as f:
    for key in range(2000):
        f.write("{},{}\n".format(key,dic["/content/cat_dog/cat_dog/test/test1/"+str(key)]))

使用VGG模型进行猫狗大战

引入将要使用的库

import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json


# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

1. 下载数据

Jeremy Howard 提供了数据的下载,链接为:http://files.fast.ai/data/dogscats.zip

在他整理的数据集中,猫和狗的图片放在单独的文件夹中, 同时还提供了一个Validation数据。如果没有GPU设备,请减少用做训练的图像数据量即可。

因为这个代码需要在colab上跑,速度会相对较慢。因此,我们重新整理了数据,制作了新的数据集,训练集包含1800张图(猫的图片900张,狗的图片900张),测试集包含2000张图。下载地址为:http://fenggao-image.stor.sinaapp.com/dogscats.zip

  • 获取图片测试集
! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip

2. 数据处理

datasets 是 torchvision 中的一个包,可以用做加载图像数据。它可以以多线程(multi-thread)的形式从硬盘中读取数据,使用 mini-batch 的形式,在网络训练中向 GPU 输送。在使用CNN处理图像时,需要进行预处理。图片将被整理成 224 × 224 × 3 224\times 224 \times 3 224×224×3 的大小,同时还将进行归一化处理。

torchvision 支持对输入数据进行一些复杂的预处理/变换 (normalization, cropping, flipping, jittering 等)。具体可以参照 torchvision.tranforms 的官方文档说明。

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes

# 通过下面代码可以查看 dsets 的一些属性

print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)

[‘cats’, ‘dogs’]
{‘cats’: 0, ‘dogs’: 1}
[(’./dogscats/train/cats/cat.0.jpg’, 0), (’./dogscats/train/cats/cat.1.jpg’, 0), (’./dogscats/train/cats/cat.10.jpg’, 0), (’./dogscats/train/cats/cat.100.jpg’, 0), (’./dogscats/train/cats/cat.101.jpg’, 0)]
dset_sizes: {‘train’: 1800, ‘valid’: 2000}

loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)


'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)
# 显示图片的小程序

def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated
# 显示图片的小程序

def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated

3. 创建 VGG Model

torchvision中集成了很多在 ImageNet (120万张训练数据) 上预训练好的通用的CNN模型,可以直接下载使用。

在本课程中,我们直接使用预训练好的 VGG 模型。同时,为了展示 VGG 模型对本数据的预测结果,还下载了 ImageNet 1000 个类的 JSON 文件。

在这部分代码中,对输入的5个图片利用VGG模型进行预测,同时,使用softmax对结果进行处理,随后展示了识别结果。可以看到,识别结果是比较非常准确的。


model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

4. 修改最后一层,冻结前面层的参数

VGG 模型如下图所示,注意该网络由三种元素组成:

卷积层(CONV)是发现图像中局部的 pattern
全连接层(FC)是在全局上建立特征的关联
池化(Pool)是给图像降维以提高特征的 invariance
VGG

我们的目标是使用预训练好的模型,因此,需要把最后的 nn.Linear 层由1000类,替换为2类。为了在训练中冻结前面层的参数,需要设置 required_grad=False。这样,反向传播训练梯度时,前面层的权重就不会自动更新了。训练中,只会更新最后一层的参数。

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

5. 训练并测试全连接层

包括三个步骤:第1步,创建损失函数和优化器;第2步,训练模型;第3步,测试模型。

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)
def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])

6. 可视化模型预测结果(主观分析)

主观分析就是把预测的结果和相对应的测试图像输出出来看看,一般有四种方式:

随机查看一些预测正确的图片
随机查看一些预测错误的图片
预测正确,同时具有较大的probability的图片
预测错误,同时具有较大的probability的图片
最不确定的图片,比如说预测概率接近0.5的图片

# 单次可视化显示的图片个数
n_view = 8
correct = np.where(predictions==all_classes)[0]
from numpy.random import random, permutation
idx = permutation(correct)[:n_view]
print('random correct idx: ', idx)
loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                  batch_size = n_view,shuffle=True)
for data in loader_correct:
    inputs_cor,labels_cor = data
# Make a grid from batch
out = torchvision.utils.make_grid(inputs_cor)
imshow(out, title=[l.item() for l in labels_cor])

# 类似的思路,可以显示错误分类的图片,这里不再重复代码

7. 结论

不知道大家发现没有,我们其实只是做了一个简单的 logistic regression!因此,我们实际上相当于是杀鸡用了牛刀(kill a fly with a sledge hammer)

在我们这个代码示例中,sledge hammer 是在 ImageNet 上预训练好的 VGG 模型,在这个数据集中,有大量猫和狗的图片。同时,我们也发现,即使不修改网络,模型也可以非常准确的识别猫和狗。

我们学习了冻结前面层,只训练最后的一个 linear layer 中的 8194 个参数 (bias 2 × 4096 + 2 2\times 4096+2 2×4096+2)。这么一个简单的任务,使用 CPU 训练也是完全可以的。

这个代码示例是非常有启发意义的(instructive),这个实验相当 instructive ,因为它展示的是如何在工程问题中使用深度学习:首先准备待解决问题的数据,然后下载预训练好的网络,接着用准备好的数据来 fine-tune 预训练好的网络。这些步骤在任何深度学习工程项目中都是如此。

最后,期待大家 have fun with the network and understanding the learning process!

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-24 14:56:26  更:2021-10-24 14:56:50 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 8:45:30-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码