IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 2021-10-23pytorch学习 -> 正文阅读

[人工智能]2021-10-23pytorch学习

一级目录

二级目录

三级目录

深度学习流程

1.定义模型

这里需要构建网络模型,后面用这个模型去训练。

2.定义数据增强

这里主要是在数据量少的情况下,对数据进行一些增强,比如平移,翻转,裁剪等操作,以提高模型的泛化能力(这一步不是必须的)。

3.定义数据加载。

这里定义数据加载器,使得模型训练时模型能源源不断地获取数据进行训练。对于Pytorch而言,数据记载主要需要用到Dataset和DataLoader这两个类。

1 Dataset的定义如下

class Dataset(object):
	def __init__(self):
		...
		
	def __getitem__(self, index):
		return ...
	
	def __len__(self):
		return ...

**getitem**函数的作用是根据索引index遍历数据,一般返回image的Tensor形式和对应标注。当然也可以多返回一些其它信息,这个根据需求而定。
**len**函数的作用是返回数据集的长度。

2 DataLoader
DataLoader将自定义的Dataset根据batch size大小、是否shuffle等封装成一个又一个batch大小的Tensor,数据给模型进行训练测试。

即在DataLoder中,会触发Mydataset中的getiterm函数读取一张图片的数据和标签,并拼接成一个batch返回,作为模型真正的输入。

class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False)

dataset:加载的数据集
batch_size:每个batch加载多少个样本
shuffle:设置为True时会在每个epoch重新打乱数据(默认: False)
num_workers:用多少个子进程加载数据。0表示数据将在主进程中加载(默认: 0)
collate_fn (callable, optional) :将一个list的sample组成一个mini-batch的函数

4.模型训练

这里首先需要定义模型的一些参数配置,优化器,损失函数定义之类的,至此我们就可以进行训练了。

5.模型测试

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-24 14:56:26  更:2021-10-24 14:59:26 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 9:48:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码