输出网络结构
如果要查看网络的网络结构,可以使用_modules属性
model._modules
OrderedDict([('conv1',
Sequential(
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)),
('conv2',
Sequential(
(0): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)),
('fc1',
Sequential(
(0): Linear(in_features=400, out_features=120, bias=True)
(1): ReLU()
)),
('fc2',
Sequential(
(0): Linear(in_features=120, out_features=84, bias=True)
(1): ReLU()
)),
('fc3', Linear(in_features=84, out_features=10, bias=True))])
遍历时使用.items()
model._modules.items()
odict_items([('conv1', Sequential(
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)), ('conv2', Sequential(
(0): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)), ('fc1', Sequential(
(0): Linear(in_features=400, out_features=120, bias=True)
(1): ReLU()
)), ('fc2', Sequential(
(0): Linear(in_features=120, out_features=84, bias=True)
(1): ReLU()
)), ('fc3', Linear(in_features=84, out_features=10, bias=True))])
for name, layer in model._modules.items():
out = layer(out)
|