IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 线性判别准则与线性分类 -> 正文阅读

[人工智能]线性判别准则与线性分类

一.线性判别准则(LDA)

LDA是一种监督学习的降维技术。也就是说它的数据集的每个样本是有类别输出的,这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。

LDA算法既可以用来降维,又可以用来分类,但是目前来说,主要还是用于降维。在进行图像识别相关的数据分析时,LDA是一个有力的工具。

LDA算法的优缺点:

优点

1)在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识。

2)LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优。

缺点

1)LDA不适合对非高斯分布样本进行降维,PCA也有这个问题。

2)LDA降维最多降到类别数k-1的维数,如果我们降维的维度大于k-1,则不能使用LDA。当然目前有一些LDA的进化版算法可以绕过这个问题。

3)LDA在样本分类信息依赖方差而不是均值的时候,降维效果不好。

4)LDA可能过度拟合数据。

二.线性分类算法

支持向量机(SVM)

支持向量机(support vector machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。由简至繁的模型包括:

当训练样本线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;
当训练样本近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;
当训练样本线性不可分时,通过核技巧和软间隔最大化,学习一个非线性支持向量机;

三.编程实践

1.编程生成模拟数据集,进行LDA算法练习

LDA算法

线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。

处理鸢尾花数据集:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

class LDA():
    def Train(self, X, y):
        """X为训练数据集,y为训练label"""
        X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])#array()函数:创建数组
        X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])

        # 求中心点
        mju1 = np.mean(X1, axis=0)  # mju1是ndrray类型
        mju2 = np.mean(X2, axis=0)#mean()函数:计算每一列的均值

        # dot(a, b, out=None) 计算矩阵乘法
        cov1 = np.dot((X1 - mju1).T, (X1 - mju1))
        cov2 = np.dot((X2 - mju2).T, (X2 - mju2))
        Sw = cov1 + cov2
        # 计算w
        w = np.dot(np.mat(Sw).I, (mju1 - mju2).reshape((len(mju1), 1)))
        # 记录训练结果
        self.mju1 = mju1  # 第1类的分类中心
        self.cov1 = cov1
        self.mju2 = mju2  # 第2类的分类中心
        self.cov2 = cov2
        self.Sw = Sw  # 类内散度矩阵
        self.w = w  # 判别权重矩阵
    def Test(self, X, y):
        """X为测试数据集,y为测试label"""
        # 分类结果
        y_new = np.dot((X), self.w)
        # 计算fisher线性判别式
        nums = len(y)
        c1 = np.dot((self.mju1 - self.mju2).reshape(1, (len(self.mju1))), np.mat(self.Sw).I)
        c2 = np.dot(c1, (self.mju1 + self.mju2).reshape((len(self.mju1), 1)))
        c = 1/2 * c2  # 2个分类的中心
        h = y_new - c
        # 判别
        y_hat = []
        for i in range(nums):
            if h[i] >= 0:
                y_hat.append(0)
            else:
                y_hat.append(1)
        # 计算分类精度
        count = 0
        for i in range(nums):
            if y_hat[i] == y[i]:
                count += 1
        precise = count / nums
        # 显示信息
        print("测试样本数量:", nums)
        print("预测正确样本的数量:", count)
        print("测试准确度:", precise)
        return precise
if '__main__' == __name__:
    # 产生分类数据
    n_samples = 500
    X, y = datasets.make_classification(n_samples=n_samples, n_features=2, n_redundant=0, n_classes=2,n_informative=1, n_clusters_per_class=1, class_sep=0.5, random_state=10)
    # LDA线性判别分析(二分类)
    lda = LDA()
    # 60% 用作训练,40%用作测试
    Xtrain = X[:299, :]
    Ytrain = y[:299]
    Xtest = X[300:, :]
    Ytest = y[300:]
    lda.Train(Xtrain, Ytrain)
    precise = lda.Test(Xtest, Ytest)
    # 原始数据
    plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
    plt.xlabel("x1")
    plt.ylabel("x2")
    plt.title("Test precise:" + str(precise))
    plt.show()

运行结果:

在这里插入图片描述

处理月亮数据集:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
class LDA():
    def Train(self, X, y):
        """X为训练数据集,y为训练label"""
        X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])
        X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])
        # 求中心点
        mju1 = np.mean(X1, axis=0)  # mju1是ndrray类型
        mju2 = np.mean(X2, axis=0)
        # dot(a, b, out=None) 计算矩阵乘法
        cov1 = np.dot((X1 - mju1).T, (X1 - mju1))
        cov2 = np.dot((X2 - mju2).T, (X2 - mju2))
        Sw = cov1 + cov2
        # 计算w
        w = np.dot(np.mat(Sw).I, (mju1 - mju2).reshape((len(mju1), 1)))
        # 记录训练结果
        self.mju1 = mju1  # 第1类的分类中心
        self.cov1 = cov1
        self.mju2 = mju2  # 第1类的分类中心
        self.cov2 = cov2
        self.Sw = Sw  # 类内散度矩阵
        self.w = w  # 判别权重矩阵
    def Test(self, X, y):
        """X为测试数据集,y为测试label"""
        # 分类结果
        y_new = np.dot((X), self.w)
        # 计算fisher线性判别式
        nums = len(y)
        c1 = np.dot((self.mju1 - self.mju2).reshape(1, (len(self.mju1))), np.mat(self.Sw).I)
        c2 = np.dot(c1, (self.mju1 + self.mju2).reshape((len(self.mju1), 1)))
        c = 1/2 * c2  # 2个分类的中心
        h = y_new - c
        # 判别
        y_hat = []
        for i in range(nums):
            if h[i] >= 0:
                y_hat.append(0)
            else:
                y_hat.append(1)
        # 计算分类精度
        count = 0
        for i in range(nums):
            if y_hat[i] == y[i]:
                count += 1
        precise = count / (nums+0.000001)
        # 显示信息
        print("测试样本数量:", nums)
        print("预测正确样本的数量:", count)
        print("测试准确度:", precise)
        return precise
if '__main__' == __name__:
    # 产生分类数据
    X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
    # LDA线性判别分析(二分类)
    lda = LDA()
    # 60% 用作训练,40%用作测试
    Xtrain = X[:60, :]
    Ytrain = y[:60]
    Xtest = X[40:, :]
    Ytest = y[40:]
    lda.Train(Xtrain, Ytrain)
    precise = lda.Test(Xtest, Ytest)
    # 原始数据
    plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
    plt.xlabel("x1")
    plt.ylabel("x2")
    plt.title("Test precise:" + str(precise))
    plt.show()

运行结果:

在这里插入图片描述

2.对月亮数据集进行SVM分类

import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
import numpy as np
import matplotlib as mpl
from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
# 为了显示中文
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False#rc配置或rc参数,通过rc参数可以修改默认的属性,包括窗体大小、每英寸的点数、线条宽度、颜色、样式、坐标轴、坐标和网络属性、文本、字体等。
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)#生成月亮数据集
def plot_dataset(X, y, axes):#绘制图形
    plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
    plt.axis(axes)
    plt.grid(True, which='both')
    plt.xlabel(r"$x_1$", fontsize=20)
    plt.ylabel(r"$x_2$", fontsize=20, rotation=0)
    plt.title("月亮数据",fontsize=20)
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()

运行结果:

在这里插入图片描述

polynomial_svm_clf = Pipeline([
        # 将源数据 映射到 3阶多项式
        ("poly_features", PolynomialFeatures(degree=3)),
        # 标准化
        ("scaler", StandardScaler()),
        # SVC线性分类器
        ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
    ])
polynomial_svm_clf.fit(X, y)
def plot_predictions(clf, axes):#绘制图形
    # 打表
    x0s = np.linspace(axes[0], axes[1], 100)
    x1s = np.linspace(axes[2], axes[3], 100)
    x0, x1 = np.meshgrid(x0s, x1s)
    X = np.c_[x0.ravel(), x1.ravel()]
    y_pred = clf.predict(X).reshape(x0.shape)
    y_decision = clf.decision_function(X).reshape(x0.shape)
#     print(y_pred)
#     print(y_decision)  
    plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
    plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()

运行结果:

在这里插入图片描述

改变参数C再次运行(此处设置C的值分别为0.001,1,1000,1000000)

from sklearn.svm import SVC
gamma1, gamma2 = 0.1, 5
C1, C2, C3, C4 = 0.001,1, 1000,1000000#设置C的大小,此处设置了4组
hyperparams = (gamma1, C1), (gamma1, C2),(gamma1, C3), (gamma1, C4)
svm_clfs = []
for gamma, C in hyperparams:
    rbf_kernel_svm_clf = Pipeline([
            ("scaler", StandardScaler()),
            ("svm_clf", SVC(kernel="rbf", gamma=gamma, C=C))
        ])
    rbf_kernel_svm_clf.fit(X, y)
    svm_clfs.append(rbf_kernel_svm_clf)
plt.figure(figsize=(11, 7))
for i, svm_clf in enumerate(svm_clfs):
    plt.subplot(221 + i)
    plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5])
    plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
    gamma, C = hyperparams[i]
    plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=16)
plt.tight_layout()
plt.show()

运行结果:

在这里插入图片描述

这里的C是一个大于0的数,可以理解为错误样本的惩罚程度,若 C 为无穷大,线性 SVM 就会变成了线性可分 SVM;当 C 为有限值的时候,才会允许部分样本不遵循约束条件。

四.总结

SVM是一种典型的二分类器,现实中处理多分类问题有三种方法,一是是一对多,每次解一个两分类,对n个样本得到n个分类器;二是一对一,每次选择一个类作为正样本,负样本只用选其余的一个类,这样就避免了数据偏斜的问题;三是DAG SVM,这样在分类时,我们就可以先问分类器“1对5”(意思是它能够回答“是第1类还是第5类”),如果它回答5,我们就往左走,再问“2对5”这个分类器,如果它还说是“5”,我们就继续往左走,这样一直问下去,就可以得到分类结果。好处是我们其实只调用了4个分类器(如果类别数是k,则只调用k-1个),分类速度飞快,且没有分类重叠和不可分类现象。

五.参考链接

https://blog.csdn.net/ruthywei/article/details/83045288

https://blog.csdn.net/sinat_20177327/article/details/79729551

https://www.cnblogs.com/hebulingding/p/5263617.html

https://blog.csdn.net/weixin_43869980/article/details/106196981

https://blog.csdn.net/weixin_44980490/article/details/106196307

https://zhuanlan.zhihu.com/p/77750026

https://www.jianshu.com/p/PTfL2m

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-29 13:03:21  更:2021-10-29 13:03:29 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 6:19:17-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码