用Colab进行Cifar10图像分类
```python
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
dataset_transform=torchvision.transforms.Compose([
torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225))
])
train_data=torchvision.datasets.CIFAR10(root="../data",train=True,transform=dataset_transform,download=True)
test_data=torchvision.datasets.CIFAR10(root="../data",train=False,transform=dataset_transform,download=True)
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
test_data_size=len(test_data)
class Cifar10(nn.Module):
def __init__ (self):
super(Cifar10,self).__init__()
self.model=nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x=self.model(x)
return x
Cifar=Cifar10()
if torch.cuda.is_available():
Cifar=Cifar.cuda()
loss_fn=nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn=loss_fn.cuda()
learning_rate=0.01
optimizer=torch.optim.SGD(Cifar.parameters(),lr=learning_rate)
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("../logs_train")
%load_ext tensorboard
for i in range(epoch):
print("-------第 {} 轮训练开始-------".format(i+1))
# 训练步骤开始
Cifar.train()
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = Cifar(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
Cifar.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = Cifar(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(Cifar, "Cifar1_{}.pth".format(i))
print("模型已保存")
writer.close()
在colab上打开tensorboard可视化功能需要命令如下:
!pip install tensorboard
!pip install tensorboardx
!pip install tensorflow
随后创建SummerWriter实例后 %load_ext tensorboard命令启动功能
%tensorboard --logdir …/logs_train打开
|