| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 深度学习模型训练建议 -> 正文阅读 |
|
[人工智能]深度学习模型训练建议 |
目录 一、假如训练集表现不好1.尝试新的激活函数ReLU:Rectified Linear Unit 图像如下图所示:当z<0时,a = 0,? 当z>0时,a = z,也就是说这个激活函数是对输入进行线性转换。使用这个激活函数,由于有0的存在,计算之后会删除掉一些神经元,使得神经网络变窄。 ?该函数也有其他变体,如下图所示,主要是对于z小于0的时候,对应 Maxout:以上几种函数的一般形式 简单来说就是谁大输出谁,通过Maxout可以自己学习激活函数。当给出的参数不同的时候,可以得到上面所描述的各类函数。如下图所示,当输入给1个计算单元时,得到蓝色的线,假如第二个计算单元参数均为0,则是X轴上的一条线,那么在这两个之中取大的那个,就是ReLU;当第二个计算单元参数不为0的时候,就可以得到其他形式的结果。 2.自适应学习率①AdagradAdagrad是使用前面的梯度进行平方和再开方,作为计算梯度时系数的一部分。 ? ②RMSProp是Adagrad的进阶版,在Adagrad中,是使用了前面所有的梯度平方和再开方,这个系数中没有考虑当前的梯度。在RMSProp中,是考虑了现在的梯度,也对其进行平方,并对两项进行一个权重的分配。 ③ Momentum加入动量的梯度下降 下图中,v就是上一次的方向。在计算本次方向的时候,加入lambda倍的上一次的方向。其实v就是过去算出来的所有的梯度的总和。 ? ④Adam 将RMSProp和Momentum结合 ? 二、在测试集上效果不好1.提前停止通过交叉验证集,提前停止训练 2.正则化?和其他的算法正则化方式一致,有L1和L2正则,此处不再详细描述。 3.Dropout每次训练的时候,都以p%的几率去掉一些神经元以及输入值。得到如下图所示的更瘦一些的神经网络。直接去训练这个神经网络。下一次训练的时候,对整个网络重新进行采样。(类似于随机森林) 在测试的时候不进行dropout,如果训练的时候的dropout几率是p%,那么在测试集上,所有的权重都乘上(1-p)% ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 8:50:38- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |