IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 多元线性回归算法预测房价 -> 正文阅读

[人工智能]多元线性回归算法预测房价

一、多元线性回归理解

线性,图像上任意一点的坐标,y值都是x值的a倍.我们把这种横纵坐标始终呈固定倍数的关系叫做"线性".线性函数的图像是一条直线.所以我们知道了多元线性回归函数的图像一定也是一条直线,多元,顾名思义,就是表达式中存在多个自变量(属性),
多元线性回归就是:用多个x(变量或属性)与结果y的关系式 来描述一些散列点之间的共同特性.这些x和一个y关系的图像并不完全满足任意两点之间的关系(两点一线),但这条直线是综合所有的点,最适合描述他们共同特性的,因为他到所有点的距离之和最小也就是总体误差最小.

二、波士顿房价案例

市场房价的走向受到多种因素的影响,通过对影响市场房价的多种因素进行分析,有助于对未来房价的走势进行较为准确的评估。
??通过对某段时间某地区的已售房价数据进行线性回归分析,探索影响房价高低的主要因素,并对这些影响因素的影响程度进行分析,利用分析得到的数据,对未来房价的趋势和走向进行预测。
??本文探究街区(neighborhood),房屋面积(area),卧室数bedrooms,浴室数bathrooms,房屋风格(style)与 房价(price)的关系已经影响大小。
在这里插入图片描述

三、数据清洗(数据预处理)

学习参考资料“多元线性回归模型预测房价.ipynb”,自己实践重新做一下针对房屋数据集“house_prices.csv”的多元线性回归(基于统计分析库statsmodels);并重点理解
偏差数据、缺少数据的预处理(数据清洗)、“特征共线性”的检测方法以及统计学的传统估计参数。

1、数据预处理

在观察原始数据的过程中我们不难发现:有些房屋面积(area)过小、没有卧室或者卫生间等疑似错误。所以,我们要先对数据进行清洗,之后才能利用。
在这里插入图片描述

2、数据筛选

在这里插入图片描述
将bedroom等于0的筛选掉
在这里插入图片描述
将bathroom等于0的筛选掉
在这里插入图片描述
将area小于200的筛选掉
在这里插入图片描述

3、非数值型数据转换

对于style,将原数据的ranch、victorian、lodge替换为100、200、300。
在这里插入图片描述
这样就可以进行线性回归了。

四、使用Excel实现回归

1.回归实现

将房价(price)作为因变量,表格中的其他变量作为自变量,使用Excel对表中的数据进行回归分析。
在这里插入图片描述

2、回归分析

在这里插入图片描述
但根据Coefficients估算出的回归方程可能存在较大的误差。更为重要的是P-value值,由表中P-value的值可以发现,自变量房屋面积x 2 x_2x
2
?
的P值远小于显著性水平0.05,因此房屋面积(area)与房价(price)相关。卧室数(bedrooms)和浴室数(bathrooms)的P值远大于显著性水平0.05,说明这卧室数(bedrooms)和浴室数(bathrooms)与房价(price)相关性较弱,甚至不存在线性相关关系。

五、使用代码实现回归

  1. 数据预处理

首先查看数据的基础信息

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt#导入数据
df = pd.read_csv("house_prices.csv")
#读取数据的基础信息
df.info()

在这里插入图片描述
df.info():返回表格的一些基本信息,主要介绍数据集各列的数据类型,是否为空值,内存占用情况
RangeIndex: # 行数,5414行
Data columns (total 7 columns): #列数,7列
non-null: 意思为非空的数据
dtypes: int64(5), object(2) :数据类型
2、冗余数据的判断与处理

# 判断数据中是否存在重复观测
df.duplicated().any()

3、缺失值识别与处理

# 判断各变量中是否存在缺失值
df.isnull().any(axis = 0)
# 各变量中缺失值的数量
df.isnull().sum(axis = 0)
# 各变量中缺失值的比例
df.isnull().sum(axis = 0)/df.shape[0]

在这里插入图片描述
4、数据异常值识别与处理

# 异常值处理
# ================ 异常值检验函数:iqr & z分数 两种方法 =========================
def outlier_test(data, column, method=None, z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据
    column: full_data 中的指定列,格式 'x' 带引号
    return 可选; outlier: 异常值数据框 
    upper: 上截断点;  lower: 下截断点
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
            选 Z 方法时,Z 默认为 2
    """
    # ================== 上下截断点法检验异常值 ==============================
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        # 四分位点;这里调用函数会存在异常
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        # 1,3 分位数
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        # 计算上下截断点
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    # ===================== Z 分数检验异常值 ==========================
    if method == 'z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """ 
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)
        # 计算两个 Z 分数的数值点
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower

进行异常检测‘

#对数据进行异常值检测
outlier, upper, lower = outlier_test(data=df, column='price', method='z')

outlier.info();
outlier.sample(5)

在这里插入图片描述
丢弃异常值

# 这里简单的丢弃即可
df.drop(index=outlier.index, inplace=True)

5、统计非数值变量

# 类别变量,又称为名义变量,nominal variables
nominal_vars = ['neighborhood', 'style']

for each in nominal_vars:
    print(each, ':')
    print(df[each].agg(['value_counts']).T)
    # 直接 .value_counts().T 无法实现下面的效果
    ## 必须得 agg,而且里面的中括号 [] 也不能少
    print('='*35)
    # 发现各类别的数量也都还可以,为下面的方差分析做准备

在这里插入图片描述
绘出热力图

# 热力图 
def heatmap(data, method='pearson', camp='RdYlGn', figsize=(10 ,8)):
    """
    data: 整份数据
    method:默认为 pearson 系数
    camp:默认为:RdYlGn-红黄蓝;YlGnBu-黄绿蓝;Blues/Greens 也是不错的选择
    figsize: 默认为 10,8
    """
    ##    消除斜对角颜色重复的色块
    #     mask = np.zeros_like(df2.corr())
    #     mask[np.tril_indices_from(mask)] = True
    plt.figure(figsize=figsize, dpi= 80)
    sns.heatmap(data.corr(method=method), \
                xticklabels=data.corr(method=method).columns, \
                yticklabels=data.corr(method=method).columns, cmap=camp, \
                center=0, annot=True)
    # 要想实现只是留下对角线一半的效果,括号内的参数可以加上 mask=mask

在这里插入图片描述
?通过热力图可以看出 area,bedrooms,bathrooms等变量与房屋价格 price 的关系都还比较强,所以值得放入模型,但分类变量 style与 neighborhood 两者与 price 的关系未知。
?5、方差分析

## 利用回归模型中的方差分析
## 只有 statsmodels 有方差分析库
## 从线性回归结果中提取方差分析结果
import statsmodels.api as sm
from statsmodels.formula.api import ols # ols 为建立线性回归模型的统计学库
from statsmodels.stats.anova import anova_lm

# 从数据集样本中随机选择 600 条,如果希望分层抽样,可参考文章:
df = df.copy().sample(600)

# C 表示告诉 Python 这是分类变量,否则 Python 会当成连续变量使用
## 这里直接使用方差分析对所有分类变量进行检验
## 下面几行代码便是使用统计学库进行方差分析的标准姿势
lm = ols('price ~ C(neighborhood) + C(style)', data=df).fit()
anova_lm(lm)

# Residual 行表示模型不能解释的组内的,其他的是能解释的组间的
# df: 自由度(n-1)- 分类变量中的类别个数减1
# sum_sq: 总平方和(SSM),residual行的 sum_eq: SSE
# mean_sq: msm, residual行的 mean_sq: mse
# F:F 统计量,查看卡方分布表即可
# PR(>F): P 值

在这里插入图片描述

使用Statsmodels建立多元线性回归模型

此处直接使用最小二乘法建立线性回归模型

from statsmodels.formula.api import ols
#最小二乘法建立线性回归模型
lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit()
lm.summary()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
模型拟合效果不理想,R 2 = 0.54 R^2 =0.54R
2
=0.54,模型需要进一步优化。

使用Sklearn库建立多元线性回归模型

#导入相关库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split #这里是引用了交叉验证
from sklearn.linear_model import LinearRegression  #线性回归
from sklearn.linear_model import Lasso, Ridge, LinearRegression as LR
from sklearn.metrics import r2_score, explained_variance_score as EVS, mean_squared_error as MSE
from sklearn.model_selection import train_test_split, cross_val_score
from pandas.core.accessor import register_dataframe_accessor

#读入数据
data=pd.read_csv('house_prices.csv')
x = data[['neighborhood','area','bedrooms','bathrooms','style']]# 特征数据,自变量
y= data['price']# 标签值,因变量

#以8:2的比例分成训练集与测试集
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.2, random_state=1)

reg = LR().fit(x_train, y_train)  # 训练模型
yhat = reg.predict(x_test)  # 基于测试集x去预测标签
print("r2 = ",r2_score(y_test,yhat))#判定系数R^2

在这里插入图片描述

f = open("多元线性回归.txt", 'w+', encoding='utf8')
f.write("参数为:" + str(reg.coef_)+"\t\n")  # 得到各个特征的系数
f.write("截距为:" + str(reg.intercept_)+"\t\n")  # 得到截距,常数c
f.write("均方差为:" + str(MSE(y_test, yhat))+"\t\n")  # 均方差(绝对值)
f.write('平均误差相对于样本真实值平均值的比例为:'+str(np.sqrt(MSE(y_test, yhat)) /y_test.mean())+"\t\n")  # 平均误差相对于样本真实值平均值的比例
f.write("判定系数R^2为:"+str(r2_score(y_test,yhat))+"\t\n")
#print("R^2的均值为:",r2_score(y_test,yhat))
f.write(("可解释方差为:"+str(cross_val_score(reg, x, y, cv=5, scoring="explained_variance")) ))
f.close()

在这里插入图片描述
基于Sklearn的线性回归模型的精准度高于基于Statsmodels的线性回归模型。

六、总结

线性(OLS)回归比较给定变量在某些说明性变量发生变化时的响应。 但是,很少有因变量仅由一个变量解释。 在这种情况下,分析师使用多元回归,该回归尝试使用多个自变量来解释因变量。 多元回归可以是线性的也可以是非线性的。

多元回归基于以下假设:因变量和自变量之间都存在线性关系。 它还假设自变量之间没有主要的相关性。

七、参考链接

https://blog.csdn.net/weixin_43196118/article/details/108462140
https://www.cnblogs.com/chouxianyu/p/11704665.html
https://mooc1.chaoxing.com/ueditorupload/read?objectId=03cc3afdee4b565d06b5820983b99090&fileOriName=%E5%A4%9A%E5%85%83%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E6%A8%A1%E5%9E%8B%E9%A2%84%E6%B5%8B%E6%88%BF%E4%BB%B7.pdf

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-30 12:33:56  更:2021-10-30 12:35:51 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 8:45:06-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码