IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> F. 人工智能 --- 教训总结 -> 正文阅读

[人工智能]F. 人工智能 --- 教训总结

F. 人工智能 — 教训总结

AI 防锅指南

  • 没想好解什么问题(系统没有,你来帮我解决)
  • 数据没有(领域知识、用户数据没有,你来帮我生成答案)
  • 场景分类没有(系统准确率不高,你们的算法拿过来用用)
  • Loss函数没有(达成目标不清楚,你帮我想想)

确保搞砸人工智能项目 — 文因互联 CEO 鲍捷

  • 一下子砸很多的钱
    • 案例
      • 日本的五代机。当初日本举全国之力,砸了几百亿日元,最终没有做成。
      • 一开始砸很多钱,为什么还会失败?你要想,做一个项目,通常是有目标的。当你有一个大预算的时候,你的目标通常也定得很高。像五代机的目标,不单当时是做不到的,三十年后的今天,也是做不到的。
      • 罗马不是一天建成的,所以一下子砸很多钱,就会导致项目的目标过高,从而导致这个项目有极大的失败概率。
    • 总结
      • 目标越大,期望越大,失望也就越大,不如将大目标拆分,一步步实现,降低期望,贵在坚持
  • 根据最新论文来决定技术路线
    • 案例
      • 从2003年到2012年整整10年,学术界所发表的自然语言处理论文的实体抽取子领域里,完全用机器学习的方法论文占到了75%,混合机器学习和基于规则的方法论文占到了21%,完全只用规则方法的论文,只有百分之一点几,非常低的比例。
      • 但是当看到工业界的实际应用的时候,发现了完全不同的技术占比分布,用规则方法的占到了45%。
      • 如果光看大型的供应商,比如说IBM这样的公司,67%的软件是完全基于规则方法的。完全基于统计方法即machine learning方法的软件,在所有的供应商那里占33%,在大型的供应商那里只占了17%。
    • 总结
      • 一定要根据现实的情况,根据现实的约束,来决定技术路线。
      • 原因有几点:
        • 工业界技术水平达不到
        • 针对垂直领域,采用学术界的方法,成本太高,完全没有必要
        • 工业界的使用环境,带有各种缺陷,不适合
  • 脱离真正的应用场景
    • 案例
      • OWL WORKING GROUP 在开会的时候,写了大概好几十个应用案例,但是大部分的案例都是这样的:一个制药公司要做一个药,应该怎么表达制药的知识,或者一个医生如何表达病历、疾病或基因,大体上都是这样的应用。没有任何一个案例是在讲述在网上如何找一个朋友,或者如何跟朋友聊天,或者如何去订餐,日常生活中的案例都是没有的。
      • OWL2最终写出来以后,有600页纸,这是一个非常复杂的语言。事实上,也就是在一些少量的企业级应用里面被用到了,在真正的日常应用当中,成功的案例几乎没有。这就是个典型的脱离了应用场景的项目,所以这个项目,花了很多钱,最终没有达到真实想达到的目标。
    • 总结
      • 跟上一条一个类型。脱离现实的应用场景,只能局限于某种领域。
  • 使用过于领先的架构。
    • 案例
      • Twine的CEO Nova Spivack ,是我们领域非常值得尊重的一个先行者,也是一个技术大拿,同时也是一个非常成功的投资人。他就检讨了Twine的失败。他说我试图在太多的地方进行革新,我应该要么革新一个平台,要么革新一个应用,要么革新一个商业模式,但是我似乎在太多的地方都进行革新了,而且我使用了一种非常超前的架构,就是RDF数据库,导致了我要追求的目标太大,我无法达到这个目标。
    • 总结
      • 根据团队的实际情况决定项目的进度
      • 在上应用的时候不要太着急,如果你只是一个在线应用,可以放一放,先把离线的这部分运维的工作搞清楚以后,然后再上线,也可以先用一个小数据集试一试。总之,步子不要太大。
  • 不能管理用户预期
    • 案例
      • 我们最早提供了一个终端级产品,用户的评价就不是特别好,后来我们调整了一下定位,把它调整成用搜索界面来提供服务,系统顶层的智能程度没有太大改变,但是用户的预期和评价马上就好起来了,因为用户预期降低了。这样的语义搜索引擎,相比其他的搜索引擎,其实还是好一些的。
      • 对话机器人其实也一样,如果你给用户的预期,是能够跟他平等对话的机器人的话,通常是很难达到的。用户通常玩一玩就会发现好傻,然后就不玩了,所以大家注意到谷歌机器人跟Apple的siri机器人定位有很大区别,谷歌机器人不仅仅做对话,它能够预先帮你去做一些事情,甚至主动地去帮你做一些自动化的事情,其实这是非常聪明的选择。
    • 总结
      • 目前能够跟人长期进行交互的机器人,其实是一个更加偏秘书型的,或者说它就是一个帮助你进行任务自动化的机器。如果你是立足于对话,其实很难满足用户预期,但是如果你立足于自动化,就比较容易达到用户预期。
      • 同样的技术,你用不同的方法去服务用户,用户预期不一样,用户的感觉就完全不一样。所以要尽可能地让用户感知到产品的成熟度,在他的预期之上,这个产品才有可能成功,他才愿意付费。
  • 不理解认知复杂性
    • 案例
      • 当时做的对比实验是找了一群RPI的计算机系本科生,让他们来看电视连续剧,看完以后描述情节。一部分人用自然语言来进行描述,一部分人用Semantic Wiki,以更加结构化的方式来进行描述。然后再找了学生来分别阅读前两组学生的描述,最后让他们来做题,看哪个组能够更精准地来复原电视剧情节。最后得到的结果发现是用自然语言描述是更容易,就是描述得更精准,速度更快。
      • 实际上普通人所理解的复杂性不是这样的,比如说你半页纸就能说明白的东西,那是一个简单的东西,如果让我看到20页纸,才能看明白,那这个东西是一个复杂的东西。所以一个技术,你能不能够让程序员用起来,能不能让用户用起来,最核心的事情,你是不是能够让他们在认知上面觉得这东西,一看就懂,一听就懂,一打开就懂,不用解释,这才叫简单。
    • 总结
      • 输出是理解后的结果,要想让别人理解你的想法或技术,就要以他们的认知去思考并组织输出
  • 专业性不足
    • 案例
      • 人工智能产品,的的确确是有它的专业性的。很多机构想试图自己去做这样的事情,花了1000万、2000万、3000万冤枉钱,结果做不到。确实,如果没有一个足够专业的人是很难把这种事情给做成的。
      • IBM Watson 系统里面有几十种不同的算法,有机器学习的算法,有自然语言处理的算法,有知识图谱的算法。你要把所有的这些算法恰到好处地组合在一起,拿捏的尺度就是一个特别重要的能力。你该用什么样的东西,你该不用什么样的东西。
      • 人工智能的很多事情,困难就在这儿。你到网上去拿一个什么开源包啥的,你把它做到80%,都很容易做得到。但难度就在于最后的20%,通常可能需要98%、99%的正确率,才能够满足用户的需求,但是如果专业性不够,最后的这些点是非常难的。
    • 总结
      • 业余和专业的区别就是,专业决定你的上限
  • 工程能力不足
    • 案例
      • 一个人工智能的技术能不能做得好,核心往往不仅仅是算法,而是底下的架构,还有系统。比如论文中其实是很好的分布式推理算法,但是我因为缺少这个架构,就没有办法把这个东西实现出来。后来像深度学习也是这样的。最近看到陈天奇他们的实验室,把算法、架构、操作系统都放在一个实验室里面来运作,觉得这是一个特别好的事情。目前算法和架构之间的裂缝太大了。
      • 工程是解决人工智能的核心钥匙。如果代码能力不行,架构能力不行,工程能力不行,在这个情况下,根本就不应该去谈算法。优先应该把工程能力补起来,然后再谈算法。
    • 总结
      • 实践是检验阶段。系统优于算法
  • 阵容太豪华。
    • 案例
      • 我们也经常看到一些初创公司,不管是从商务上,还是从技术上,特别优秀的人组成了一个公司,最后还是会失败。为什么?因为比较优秀的人,就是想要做大的事情。一个大的事情,很难一下子就做对。通常大的事情,是从小的事情成长起来的。如果我们不能够让豪华的阵容,从小事做起,通常这样一个事情是会失败的。
    • 总结
      • 团队互补、持之以恒
  • 时机不到,运气不好
    • 案例
    • 总结
      • 多读历史,理解“时机”和“运气”
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-30 12:33:56  更:2021-10-30 12:36:36 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 8:06:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码