IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习_LGB自定义huber loss函数 -> 正文阅读

[人工智能]机器学习_LGB自定义huber loss函数

很多时候为了达到更好的训练效果我们需要改变损失函数,以加速数据的拟合。

一、huber函数的近似函数

众所周知我们rmse会对异常值的损失关注度特别高,mae对异常会没有那么敏感。将两者进行结合就可以更加关注大部分的样本的损失,减少关注异常值,在一定程度上提升模型的泛化能力。
h u b e r l o s s = { 1 2 ( y t r u e ? y p r e d ) 2 ????????? i f ?? ∣ y t r u e ? y p r e d ∣ < δ δ ∣ y t r u e ? y p r e d ∣ ? 1 2 δ 2 ?? i f ?? ∣ y t r u e ? y p r e d ∣ > = δ huber_loss = \left\{\begin{matrix} \frac{1}{2}(y_{true} - y_{pred})^2 \ \ \ \ \ \ \ \ \ if\ \ |y_{true} - y_{pred}| < \delta \\ \delta|y_{true} - y_{pred}|-\frac{1}{2}\delta^2 \ \ if\ \ |y_{true} - y_{pred}| >= \delta \end{matrix}\right. huberl?oss={21?(ytrue??ypred?)2?????????if??ytrue??ypred?<δδytrue??ypred??21?δ2??if??ytrue??ypred?>=δ?

但是在gbdt模型中,需要运用一阶导与二阶导的比值来结算树节点的拆分增益。mse不具有二阶导。所以我们需要寻找近似可导函数来替代。
P s e u d o _ h u b e r _ l o s s = δ 2 ( 1 + ( y ^ ? y δ ) 2 + 1 ) Pseudo\_huber\_loss= \delta ^2(\sqrt{1 + (\frac{\hat{y} - y}{\delta})^2} + 1) Pseudo_huber_loss=δ2(1+(δy^??y?)2 ?+1)
一阶导:
g = δ 2 x 1 + ( x δ ) 2 ; ?? x = y ^ ? y g = \delta ^2\frac{x}{\sqrt{1 + (\frac{x}{\delta})^2}};\ \ x=\hat{y} - y g=δ21+(δx?)2 ?x?;??x=y^??y
二阶导:
h = δ 2 1 ( 1 + ( x δ ) 2 ) 3 2 h = \delta ^2\frac{1}{(1 + (\frac{x}{\delta})^2)^{\frac{3}{2}}} h=δ2(1+(δx?)2)23?1?

二、boston数据集实战

2.1 数据加载

import lightgbm as lgb
from sklearn.datasets import load_boston
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np

bst_dt = load_boston()
bst_df = pd.DataFrame(bst_dt.data, columns = bst_dt.feature_names)
bst_df['target'] = bst_dt.target
x_tr, x_te, y_tr, y_te = train_test_split(bst_df.drop('target', axis=1), bst_df['target'], test_size=0.2, random_state=42)

2.2 sklearn接口lgb简单拟合


lgb_params = {
    'objective' : 'regression',
    'num_leaves' : 30,
    'max_depth': 6,
    'metric': 'rmse',
    'bagging_fraction':0.9,
    'feature_fraction': 0.8,
    'n_jobs': -1 ,
    'n_estimators': 100,
    'subsample_for_bin': 500
}

lgb_model = lgb.LGBMRegressor(**lgb_params)
lgb_model.fit(x_tr, y_tr, eval_set=[(x_tr, y_tr)], verbose=10)
y_pred = lgb_model.predict(x_te)
mae_o = mean_absolute_error(y_te, y_pred)

自定义huber loss

def huber_objective(y_true, y_pred):
    error = y_pred - y_true
    delta = 8
    scale = 1 + (error / delta) ** 2
    scale_sqrt = np.sqrt(scale)
    g = delta * delta / scale * error
    h = delta * delta / scale / scale_sqrt
    return g, h


lgb_params.update({'objective': huber_objective})
print(lgb_params)
lgb_model = lgb.LGBMRegressor(**lgb_params)
lgb_model.fit(x_tr, y_tr, eval_set=[(x_tr, y_tr)], verbose=10)
y_pred = lgb_model.predict(x_te)
mae_huber = mean_absolute_error(y_te, y_pred)
mae_o, mae_huber

结果简单分析

仅仅从rmse上看,很显然,huber loss的损失会更大。我们进一步观察一下拟合差值
的分布情况。

"""
- rmse
[10]    training's rmse: 4.78619
[20]    training's rmse: 3.35349
[30]    training's rmse: 2.84163
[40]    training's rmse: 2.56263
[50]    training's rmse: 2.35089
[60]    training's rmse: 2.20306
[70]    training's rmse: 2.06908
[80]    training's rmse: 1.95886
[90]    training's rmse: 1.86569
[100]   training's rmse: 1.79135
- huber
[10]    training's rmse: 5.49376
[20]    training's rmse: 3.54926
[30]    training's rmse: 3.07389
[40]    training's rmse: 2.89136
[50]    training's rmse: 2.73511
[60]    training's rmse: 2.61101
[70]    training's rmse: 2.50242
[80]    training's rmse: 2.42138
[90]    training's rmse: 2.35478
[100]   training's rmse: 2.30335
(2.116972786370626, 2.0635595381991485)

"""

从差值中,我们可以看出huber loss 对较为集中的值拟合较好,会忽略部分异常值。从target的分布看确实存在着小部分的异常值。用huber loss拟合的模型会具有更佳的泛化能力。
在这里插入图片描述

import matplotlib.pyplot as plt
import seaborn as sns
sns.distplot(bst_df['target'])
plt.show()

"""
rmse loss
>>> (y_te-y_pred).map(int).value_counts()
 0     33
 1     16
-1     16
 2     11
-2      9
 4      5
 3      3
-3      3
-6      1
-5      1
 18     1
-12     1
 7      1
 5      1
# huber loss
>>> (y_te-y_pred).map(int).value_counts()
 0     37
-1     18
 1     10
-2      9
 2      8
 3      7
-3      4
-5      2
 4      2
 23     1
-10     1
 7      1
 6      1
 5      1
"""

参考

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-09 19:29:17  更:2021-11-09 19:33:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 6:37:21-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码