| 一、如何使用GPU训练方法一:在网络模型,数据和损失函数处调用cuda()方法在上一节的模型训练套路的代码中直接进行修改
 
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class Test(nn.Module):
	def __init__(self):
		super(Test, self).__init__()
		
		self.model1 = Sequential{
			Conv2d(3, 32, 5, padding=2),
			MaxPool2d(2),
			Conv2d(32, 64, 5, padding=2),
			MaxPool2d(2),
			Conv2d(32, 64, 5, padding=2),
			MaxPool2d(2),
			Flatten(),
			Linear(1024, 64),
			Linear(64, 10)
		)
	def forward(self, x):
		x = self.model1(x)
		return x
test = Test()
if torch.cuda.is_available():
	test = test.cuda()
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
	loss_fn = loss_fn.cuda()
learning_rate = 0.01  
optimizer = torch.optim.SGD(test.parameters(), lr = learning_rate)
total_train_step = 0  
total_test_step = 0  
epoch = 10  
for i in range(epoch):
	print("---------第{}轮训练开始----------".format(i+1))
	
	test.train()  
	for data in train_dataloader:
		imgs, targets = data
		if torch.cuda.is_available():
			imgs = imgs.cuda()
			targets = targets.cuda()
		outputs = test(imgs)
		loss = loss_fn(outputs, targets)
		
		optimizer.zero_grad()
		loss.backward()
		optimizer.step()
		total_train_setp = total_train_step + 1
		if total_train_step % 100 == 0
			print("训练次数:{}, loss:{}".format(total_train_step, loss.item()))
	
	test.eval()  
	total_test_loss = 0
	total_accuracy = 0
	with torch.no_grad():
		for data in test_dataloader:
			imgs, targets = data
			if torch.cuda.is_available():
				imgs = imgs.cuda()
				targets = targets.cuda()
			outputs = test(imgs)
			loss = loss_fn(outputs, targets)
			total_test_loss = total_test_loss + loss.item()
			accuracy = (outputs.argmax(1) == targets).sum()  
			total_accuacy = total_accuracy + accuracy
	print("整体测试集上的Loss:{}".format(total_test_loss))
	print("整体测试集上的正确率:{}".format(total_accuracy/len(test_data)))
		torch.save(test, "test_{}.pth".format(i))
	
 方法二:定义运行设备,使用时直接修改device 
device = torch.device("cuda")
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class Test(nn.Module):
	def __init__(self):
		super(Test, self).__init__()
		
		self.model1 = Sequential{
			Conv2d(3, 32, 5, padding=2),
			MaxPool2d(2),
			Conv2d(32, 64, 5, padding=2),
			MaxPool2d(2),
			Conv2d(32, 64, 5, padding=2),
			MaxPool2d(2),
			Flatten(),
			Linear(1024, 64),
			Linear(64, 10)
		)
	def forward(self, x):
		x = self.model1(x)
		return x
test = Test()
test.to(device)
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
learning_rate = 0.01  
optimizer = torch.optim.SGD(test.parameters(), lr = learning_rate)
total_train_step = 0  
total_test_step = 0  
epoch = 10  
for i in range(epoch):
	print("---------第{}轮训练开始----------".format(i+1))
	
	test.train()  
	for data in train_dataloader:
		imgs, targets = data
		imgs = imgs.to(device)
		targets = targets.to(device)
		outputs = test(imgs)
		loss = loss_fn(outputs, targets)
		
		optimizer.zero_grad()
		loss.backward()
		optimizer.step()
		total_train_setp = total_train_step + 1
		if total_train_step % 100 == 0
			print("训练次数:{}, loss:{}".format(total_train_step, loss.item()))
	
	test.eval()  
	total_test_loss = 0
	total_accuracy = 0
	with torch.no_grad():
		for data in test_dataloader:
			imgs, targets = data
			imgs = imgs.to(device)
			targets = targets.to(de)
			outputs = test(imgs)
			loss = loss_fn(outputs, targets)
			total_test_loss = total_test_loss + loss.item()
			accuracy = (outputs.argmax(1) == targets).sum()  
			total_accuacy = total_accuracy + accuracy
	print("整体测试集上的Loss:{}".format(total_test_loss))
	print("整体测试集上的正确率:{}".format(total_accuracy/len(test_data)))
		torch.save(test, "test_{}.pth".format(i))
 完整的模型测试套路利用已经训练好的模型,然后给他提供输入 model.eval()
with torch.no_grad():
	output = model(image)  
print(output)
print(output.argmax(1))
 
 结束完结!大家可以去GitHub上面下载一些pytorch的代码训练学习啦! |