| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 神经网络中的概率分布函数 -> 正文阅读 |
|
[人工智能]神经网络中的概率分布函数 |
在本文中我们将尝试创建一个自定义的神经网络层,该层的训练结果是一个概率分布函数,而输出则是置信度最高的值。 “神经网络是具有相互连接的节点的计算系统,其工作原理与人类大脑中的神经元非常相似。”——SAS 神经元是一个密集的系统中的节点,它接收输入的数字并输出更多的数字。如果我们仔细观察一个密集的神经网络,就会发现神经元是相互连接的,如下图所示。 如果进一步放大,我们可以准确地看到每个神经元的作用。 例如,一个神经元可以被看作是一个盒子,它吃掉一个数字并抛出另一个计算机数字作为输出。 这种神经网络的限制是神经元只能输出一个具体的数字。并且每个数字都有一定的置信度。在物理学中可以找到一个很好的类比。当前的神经网络架构可以被视为具有特定结果的机械物理过程,但我们希望查看多个结果。 例如,在量子力学中,概率波函数表示在特定点找到粒子的概率。 这个概念可以在下图中看到。 我将尝试在下面构建的神经网络中模仿这个概念,允许神经元输出一个概率函数,该函数将输出神经元最置信度最高的值。 Tensorflow 是用于构建自定义神经网络层的库,我们将在本项目中使用它并通过 Keras API 创建一个自定义层,该层可以轻松集成到我们选择的神经网络架构中。 我将这一层称为 probability distribution function neural network(概率分布函数神经网络)。 我们可以使用以下结构在 TensorFlow 中构建神经网络:
该python类具有三个主要函数: __init__ ,进行所有与输入无关的初始 build,处理输入张量的形状并完成其余的初始化工 call,在那里进行前向传播 波函数是复值的。 为了找到概率密度,我们需要找到波函数的平方模数,这就是我们要在自定义层中模拟的行为。首先创建一个复数值部分,然后找到它的平方模数。
我们可以用上面新创建的自定义层来构建网络。
我们的模型可视化如下 现在,让我们尝试在一个基本的时间序列数据集上训练我们的模型,并看看它与ARIMA等经典统计模型的比较情况。训练的完整代码在文章的最后部分提供。在测试结果之前,我们可以先看啊可能由PDNN层生成的波函数的峰值。 看起来不错!在100轮训练之后,该模型获得了12.07的RMSE得分。让我们来看看预测。 在使用ARIMA模型的RMSE为14.96!这意味着我们的模型在很大程度上优于经典模型。 PDNN层在提高神经网络性能方面似乎具有相当大的潜力,因为它可以同时考虑多种可能的结果,而不必选择一个特定的结果。与时间序列预测示例中的ARIMA模型相比,这个想法的实际结果要好很多。 PDNN代码:https://github.com/DavidIstrati/PDNN 本文训练代码:https://www.kaggle.com/davidistrati/pdnn-demo/notebook 作者:Istrati David |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/27 6:31:37- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |