使用不同优化器训练模型,画出不同优化器的损失(loss)变化图像
使用SGD优化器代码:
import torch
import matplotlib.pyplot as plt
#准备数据集
x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[2.0],[4.0],[6.0]])
#设计模型
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel,self).__init__()
self.linear = torch.nn.Linear(1,1)
def forward(self,x):
y_pred = self.linear(x)
return y_pred
model = LinearModel()
#构造损失函数和优化器
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
epoch_list = []
loss_list = []
#训练周期(前馈,反馈,更新)
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
print(epoch,loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('w=',model.linear.weight.item())
print(('b=',model.linear.bias.item()))
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred =',y_test.data)
fig = plt.figure()
sub = fig.add_subplot(111)
sub.plot(epoch_list,loss_list)
sub.set_xlabel('epoch')
sub.set_ylabel('loss')
fig.suptitle('SGD')
plt.grid()
plt.show()
?使用SGD优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/03b93c5a04964c04978b11dc8fef4439.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
使用Adagrad优化器的损失函数图像:
?![](https://img-blog.csdnimg.cn/da8a0d6ae2d547459df10954ae227fd5.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
?使用Adam优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/4570575095e747509a158f2854c197e3.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
??使用Adamax优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/9b20602134064c3c9eda65283629440f.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
使用ASGD优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/5e85c251f5f04bf0817fe097817c9021.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
?使用RMSprop优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/e636cfb48e7d4ec382edc65a2c6ae445.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
?使用Rprop优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/b3d7a4d9c4f7404b99c9756ed3c72eeb.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_18,color_FFFFFF,t_70,g_se,x_16)
?其中LBFGS的使用和以上其他的优化器有一些不同,LBFGS需要重复多次计算函数,因此你需要传入一个闭包去允许它们重新计算你的模型,这个闭包应当清空梯度, 计算损失,然后返回,即optimizer.step(closure);其他的优化器支持简化的版本即optimizer.step()。 下面介绍一下两种方式使用的模板: optimizer.step(closure)
def closure():
optimizer.zero_grad()
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
loss.backward()
return loss
#传入闭包closure
optimizer.step(closure)
optimizer.step()
optimizer.zero_grad()
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
loss.backward()
optimizer.step()
具体代码如下:
import torch
import matplotlib.pyplot as plt
#准备数据集
x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[2.0],[4.0],[6.0]])
#设计模型
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel,self).__init__()
self.linear = torch.nn.Linear(1,1)
def forward(self,x):
y_pred = self.linear(x)
return y_pred
model = LinearModel()
#构造损失函数和优化器
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.LBFGS(model.parameters(),lr=0.01)
epoch_list = []
loss_list = []
#训练周期(前馈,反馈,更新)
for epoch in range(1000):
def closure():
optimizer.zero_grad()
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
print(epoch,loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
loss.backward()
return loss
optimizer.step(closure)
print('w=',model.linear.weight.item())
print(('b=',model.linear.bias.item()))
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred =',y_test.data)
fig = plt.figure()
sub = fig.add_subplot(111)
sub.plot(epoch_list,loss_list)
sub.set_xlabel('epoch')
sub.set_ylabel('loss')
fig.suptitle('LBFGS')
plt.grid()
plt.show()
使用LBFGS优化器的损失函数图像:
![](https://img-blog.csdnimg.cn/8877886bc796427a919449b35ba930c9.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Yqq5Yqb5a2m5Lmg55qE5pyx5pyx,size_19,color_FFFFFF,t_70,g_se,x_16)
|