| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 计算机视觉最新进展概览2021年11月7日到2021年11月13日 -> 正文阅读 |
|
[人工智能]计算机视觉最新进展概览2021年11月7日到2021年11月13日 |
?1、3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds由于动态环境中激光雷达点的稀疏性,点云中的三维目标跟踪仍然是一个具有挑战性的问题。在本文中,我们提出了一种voxel-to-BEV跟踪器,它可以显著提高稀疏三维点云的跟踪性能。具体来说,它由Siamese形状感知特征学习网络和voxel-to-BEV目标定位网络组成。Siamese形状感知特征学习网络可以获取目标的三维形状信息,学习目标的判别特征,从而识别出稀疏点云背景中的潜在目标。为此,我们首先进行模板特征嵌入,将模板的特征嵌入到潜在目标中,然后生成密集的三维形状来表征潜在目标的形状信息。对于跟踪目标的定位,体素-BEV目标定位网络以无锚的方式将目标的二维中心和z轴中心从稠密鸟瞰(稠密鸟瞰)特征地图上回归。具体来说,我们通过最大池化将体素化后的点云沿z轴压缩,得到稠密的BEV特征图,可以更有效地进行二维中心与z轴中心的回归。对KITTI和nuScenes数据集的广泛评价表明,我们的方法明显优于目前最先进的方法。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/27 6:35:16- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |