IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 一文速览-江西开放数据大赛VET风险预测诊断单特征思路分享 -> 正文阅读

[人工智能]一文速览-江西开放数据大赛VET风险预测诊断单特征思路分享


前言

经过了差不多一个月的不断实验数据工程又跑模型,最终还是发现诊断文本单特征最靠谱了。其他特征与flag关联都挺一般的,官方是根据评分来划分flag的:>5为1,<5为0.由此锁定Caprini模型评估表格中高分重点指标即可预测评分指数从而预测风险。本文提供做标签化文本预测和做文本分析预测思路,但仅提供处理思路,后续比赛结束代码开源,可参考。


?

提示:以下是本篇文章正文内容,下面案例可供参考

一、诊断文本标签化预测

诊断
结缔组织病
高血压肾损害
脊椎源性痛综合征
结肠恶性肿瘤
开角型青光眼
肺恶性肿瘤
胃炎
肺恶性肿瘤
胃恶性肿瘤
肺继发恶性肿瘤
脑梗死
躯干三度烧伤
特发性肾积水
肝硬化伴食管静脉曲张破裂出血
冠状动脉粥样硬化
胃炎
腹痛
头位顺产
为肿瘤化学治疗疗程

等这些单文本特征,由于这些特征符合Caprini模型表格:

进行评分等级风险的。而对于其他数据特征如D二聚体或凝血酶时间等特征来说关联性太小,和其他flag为0的数据拉不开太大差距(这就是人工标签和算法标签的差距,如果不能让人工标签做到尽可能精确,那只能让算法更趋近于人工的算法)?。

对这些特征进行标签化:

诊断
0
1
2
3
4
5
6
5
7
8
9
10
11
12
13
6
14

?如上述对整个文本诊断特征进行处理(得和预测文本一起进行标签化)。当然预测文本也是一样进行标签化处理。

随后进行你们想使用的机器学习模型或是深度学习模型进行预测即可。

二、词袋模型文本特征预测

此方法和上文思路仅是多了一个参考Caprini模型表格进行文本词向量划分。这里提供python处理方法:

首先利用jieba库进行词性划分:

?例如这个效果进行词向量分类从而构建词袋模型分类。

#创建一个空集
def createVocabList(dataSet):
    vocabSet = set([])
    for document in dataSet:
        vocabSet = vocabSet | set(document) #创建两个集合的并集 划掉重复出现的单词
    return list(vocabSet)

#处理样本输出为向量形式
def setOfWords2Vec(vocaList , inputSet):
    returnVec = [0]*len(vocaList)#创建一个其中所含元素全为0的向量代替文本
    for word in inputSet:
        if word in vocaList:
            returnVec[vocaList.index(word)] += 1
        else:
            print("the word:%s is not in my Vocabulary!"" % word")
    return returnVec

如果对文本词向量处理不是很了解的话可以看我另一篇文章:

机器学习:基于概率的朴素贝叶斯分类器详解--Python实现以及项目实战icon-default.png?t=LA92https://blog.csdn.net/master_hunter/article/details/109630661?spm=1001.2014.3001.5502之后构建完词袋模型对不同词向量根据其标签打上即可完成,随后进行预测调参数即可。

三、总结

总之我觉得挺遗憾的,最后卷的居然是单特征,而其他给的二十多个维度的特征数据全部浪费了没用用上去。当然第二总方法肯定会比第一种方法得分更高但是第一种更快出结果。


  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-15 15:52:28  更:2021-11-15 15:52:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 8:07:34-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码