IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【网络爬虫】网络爬虫之入门练习 -> 正文阅读

[人工智能]【网络爬虫】网络爬虫之入门练习

一、网络爬虫基本介绍

??网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。
??简单来说就是通过编写脚本模拟浏览器发起请求获取数据。爬虫从初始网页的URL开始, 获取初始网页上的URL,在抓取网页的过程中,不断从当前页面抽取新的url放入队列。直到满足系统给定的停止条件才停止。

二、爬取南阳理工OJ题目

爬取目标网址:http://www.51mxd.cn/problemset.php-page=1.htm
爬取任务:爬取每道题的题号难度标题通过率通过数/总提交数

1. 网页分析

  • 打开待爬取的网页
    在这里插入图片描述
    发现改变页数仅需改变网址http://www.51mxd.cn/problemset.php-page=n.htm中的变量n

  • 查看页面源码
    在这里插入图片描述

  • 在源码中找到待爬取的数据位置
    在这里插入图片描述
    打开开发者工具,点击一个题目,可在Element中显示。
    分析完成后,开始编写代码。

2. 内容爬取

  • 编写代码test.py
import requests
from bs4 import BeautifulSoup
import csv
from tqdm import tqdm

# 模拟浏览器访问
Headers = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.25 Safari/537.36 Core/1.70.3741.400 QQBrowser/10.5.3863.400'

# 表头
csvHeaders = ['题号', '难度', '标题', '通过率', '通过数/总提交数']

# 题目数据
subjects = []

# 爬取题目
print('题目信息爬取中:\n')
# tqdm作业:以进度条方式显示爬取进度
# 爬取11页所有题目信息
for pages in tqdm(range(1, 11 + 1)):
    # get请求第pages页
    r = requests.get(
        f'http://www.51mxd.cn/problemset.php-page={pages}.htm', Headers)
    # 判断异常
    r.raise_for_status()
    # 设置编码
    r.encoding = 'utf-8'
    # 创建BeautifulSoup对象,用于解析该html页面数据
    soup = BeautifulSoup(r.text, 'lxml')
    # 获取所有td标签
    td = soup.find_all('td')
    # 存放某一个题目的所有信息
    subject = []
    # 遍历所有td
    for t in td:
        if t.string is not None:
            subject.append(t.string)  # 获取td中的字符串
            if len(subject) == 5:   # 每5个为一个题目的信息
                subjects.append(subject)
                subject = []

# 存放题目
with open('NYOJ_Subjects.csv', 'w', newline='') as file:
    fileWriter = csv.writer(file)
    fileWriter.writerow(csvHeaders)  # 写入表头
    fileWriter.writerows(subjects)   # 写入数据

print('\n题目信息爬取完成!!!')
  • 运行
    在这里插入图片描述

  • 查看爬取文件
    在这里插入图片描述
    爬取成功


三、爬取重交新闻通知

爬取目标网址:http://www.51mxd.cn/problemset.php-page=1.htm
爬取任务:爬取每个新闻的发布日期 + 标题

1. 网页分析

  • 打开待爬取的网页
    在这里插入图片描述
    第一页urlhttp://news.cqjtu.edu.cn/xxtz.htm,第二页为http://news.cqjtu.edu.cn/xxtz/65.htm,第三页为http://news.cqjtu.edu.cn/xxtz/64.htm

  • 查找时间与标题位置
    在这里插入图片描述
    在这里插入图片描述

2. 内容爬取

  • 代码编写test2.py
import requests
from bs4 import BeautifulSoup
import csv


# 获取每页内容
def get_one_page(url):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'
    }
    try:
        info_list_page = []  # 一页的所有信息
        resp = requests.get(url, headers=headers)
        resp.encoding = resp.status_code
        page_text = resp.text
        soup = BeautifulSoup(page_text, 'lxml')
        li_list = soup.select('.left-list > ul > li')  # 找到所有li标签
        for li in li_list:
            divs = li.select('div')
            date = divs[0].string.strip()
            title = divs[1].a.string
            info = [date, title]
            info_list_page.append(info)
    except Exception as e:
        print('爬取' + url + '错误')
        print(e)
        return None
    else:
        resp.close()
    print('爬取' + url + '成功')
    return info_list_page


# main
def main():
    # 爬取所有数据
    info_list_all = []
    base_url = 'http://news.cqjtu.edu.cn/xxtz/'
    for i in range(1, 67):
        if i == 1:
            url = 'http://news.cqjtu.edu.cn/xxtz.htm'
        else:
            url = base_url + str(67 - i) + '.htm'
        info_list_page = get_one_page(url)
        info_list_all += info_list_page
    # 存入数据
    with open('教务新闻.csv', 'w', newline='', encoding='utf-8') as file:
        fileWriter = csv.writer(file)
        fileWriter.writerow(['日期', '标题'])  # 写入表头
        fileWriter.writerows(info_list_all)  # 写入数据


if __name__ == '__main__':
    main()

  • 运行
    在这里插入图片描述
  • 查看爬取文件
    在这里插入图片描述
    爬取成功

四、总结

???本文粗略介绍了网络爬虫,并通过爬虫程序的编写,进一步理解HTTP协议。实现了对南阳理工学院ACM题目网站练习题目数据的抓取和保存,以及对重交新闻网站中近几年所有的信息通知发布日期和标题进行爬取和保存。


五、参考

Python 爬虫利器二之 Beautiful Soup 的用法

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章           查看所有文章
加:2021-11-15 15:52:28  更:2021-11-15 15:55:01 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 6:00:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码