IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> VS2017 OpenCV CUDA库学习1:图像加法操作 -> 正文阅读

[人工智能]VS2017 OpenCV CUDA库学习1:图像加法操作


VS2017 CUDA编程学习1:CUDA编程两变量加法运算
VS2017 CUDA编程学习2:在GPU上执行线程
VS2017 CUDA编程学习3:CUDA获取设备上属性信息
VS2017 CUDA编程学习4:CUDA并行处理初探 - 向量加法实现
VS2017 CUDA编程学习5:CUDA并行执行-线程
VS2017 CUDA编程学习6: GPU存储器架构
VS2017 CUDA编程学习7:线程同步-共享内存
VS2017 CUDA编程学习8:线程同步-原子操作
VS2017 CUDA编程学习9:常量内存
VS2017 CUDA编程学习10:纹理内存
VS2017 CUDA编程学习实例1:CUDA实现向量点乘
VS2017 CUDA编程学习11:CUDA性能测量
VS2017 CUDA编程学习12:CUDA流
VS2017 CUDA编程学习实例2:CUDA实现秩排序
VS2017 CUDA编程学习实例3:CUDA实现直方图统计


前言

之前的学习都是针对cuda语法理论的,今天跟大家分享OpenCV CUDA库的使用。


1. OpenCV CUDA库使用框架

OpenCV CUDA库使用GpuMat存储图像矩阵,OpenCV CUDA库使用框架大致如下:

  1. 调用GpuMat::upload()函数将图像数据从CPU Mat中拷贝到GPU GpuMat上
  2. 然后调用cv::cuda::xxx()函数实现OpenCV库函数在GPU上的加速,
  3. 最用调用GpuMat::download()函数将GPU上结果图像拷贝到CPU上Mat矩阵。

2. C++ 调用OpenCV CUDA库实现图像加法操作

这里使用了共享内存,同步以及原子加法操作的概念实现直方图统计

详细代码如下所示:

#include <stdio.h>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/cudacodec.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/cudaimgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
	//定义CPU 图像矩阵变量
	cv::Mat h_img1, h_img2, h_result;

	//OpenCV读取图像
	h_img1 = imread("D:\\Programming\\Repos\\DNN\\DTTNN\\resources\\opencv\\apple.jpg");
	h_img2 = imread("D:\\Programming\\Repos\\DNN\\DTTNN\\resources\\opencv\\orange.jpg");

	//定义GPU 图像矩阵变量
	cv::cuda::GpuMat d_img1, d_img2, d_result;

	//将CPU图像数据拷贝到GPU图像矩阵变量中
	d_img1.upload(h_img1);
	d_img2.upload(h_img2);

	//执行OpenCV CUDA函数
	cv::cuda::add(d_img1, d_img2, d_result);

	//将GPU图像数据拷贝到CPU图像矩阵中
	d_result.download(h_result);

	//在CPU终端窗口显示图像
	imshow("img1", h_img1);
	imshow("img2", h_img2);
	imshow("result", h_result);
	waitKey(0);

	//销毁所有图像窗口
	destroyAllWindows();
	return 0;
}

3. 执行结果

apple.jpg
请添加图片描述

orange.jpg
请添加图片描述

图像加法操作结果:
在这里插入图片描述


总结

从上面的例子来看,使用OpenCV CUDA库还是比较简单的,具体的CUDA加速细节对调用者来说是透明的,也不需要了解CUDA的具体语法,使用简单方便,缺点可能是扩展性不好,对于OpenCV不支持的CUDA加速操作,调用者没法自己扩充(OpenCV没有提供相应的扩展接口,个人目前没有找到OpenCV提供的扩展接口)。

本人也是刚接触,上面描述如有错误,还请谅解并能指正,谢谢!

学习资料

《基于GPU加速的计算机视觉编程》

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-16 18:49:57  更:2021-11-16 18:50:33 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 6:10:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码