# 4.1
setwd('file path')
library(tseries)
library(xlsx)
library(ggplot2)
library(forecast)
library(fpp2)
library(aTSA)
# 绘制该序列时序图 ----------------------------------------------------------------
data4_1 <- read.xlsx('E4_1.xlsx', sheetIndex = 1)
ts.plot(data4_1$x)
# 判断平稳性和纯随机性 --------------------------------------------------------------
adf.test(data4_1$x)
Augmented Dickey-Fuller Test
data: data4_1$x
Dickey-Fuller = -3.9427, Lag order = 3, p-value = 0.01919
alternative hypothesis: stationary
由于单位根检验p<0.05, 故认为该序列平稳。
Box.test(data4_1$x)
Box-Pierce test
data: data4_1$x
X-squared = 17.331, df = 1, p-value = 3.14e-05
由于LB检验p<0.05, 故认为该序列为非白噪声序列。
# 根据acf和pacf进行模型识别 --------------------------------------------------------
acf(data4_1$x)
pacf(data4_1$x)
?由图可见ACF拖尾, PACF 1阶截尾。
# 建立模型 --------------------------------------------------------------------
fit4_1 <- arima(data4_1$x, order = c(1, 0, 0), method = "ML")
# 模型检验 --------------------------------------------------------------------
for (i in 1:4) {
print(Box.test(fit4_1$residual, lag = 4*i, type = "Ljung-Box"))
}
Box-Ljung test
data: fit4_1$residual
X-squared = 0.49319, df = 4, p-value = 0.9742
Box-Ljung test
data: fit4_1$residual
X-squared = 6.7532, df = 8, p-value = 0.5635
Box-Ljung test
data: fit4_1$residual
X-squared = 7.5201, df = 12, p-value = 0.8214
Box-Ljung test
data: fit4_1$residual
X-squared = 12.227, df = 16, p-value = 0.7282
由于残差的各阶纯随机检验均p>0.05, 故认为残差序列已实现白噪声。
t <- abs(fit4_1$coef) / sqrt(diag(fit4_1$var.coef))
pt(t, length(data4_1$x) - length(fit4_1$coef), lower.tail = F)
ar1 | intercept | 9.258397e-07 | 4.119551e-01 |
?由于的p值小于0.05,故认为显著不为零。
ts.diag(fit4_1, lag.seq = 1:12)
?由残差的ACF、PACF、QQ和白噪声概率图可知残差已为白噪声,故认为AR(1)模型是该序列的有效拟合模型。
模型表达式:
# 模型预测 --------------------------------------------------------------------
h <- 5 # 预测期数
fore4_1 <- forecast::forecast(fit4_1, h = h)
plot(fore4_1, xlab = "Time", ylab = "公司盈亏(万元)")
q <- qnorm(0.975, 0, 1)
L1 = fore4_1$fitted - q*sqrt(fit4_1$sigma2)
U1 = fore4_1$fitted + q*sqrt(fit4_1$sigma2)
L2 = fore4_1$lower[, 2]
U2 = fore4_1$upper[, 2]
L <- c(L1, L2)
U <- c(U1, U2)
c1 = min(data4_1$x, L)
c2 = max(data4_1$x, U)
fitted_and_mean <- c(fore4_1$fitted , fore4_1$mean)
plot(data4_1$x, type = "p", pch = 8, ylim = c(c1, c2), xlab = "Time",
xlim = c(min(data4_1$t), max(data4_1$t) + h), ylab = "公司盈亏(万元)")
lines(fitted_and_mean, col = 2, lwd = 2)
lines(L, col = 4, lty = 2)
lines(U, col = 4, lty = 2)
|