| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> pytorch:logistic regression(但是我们常把它理解为classification问题) -> 正文阅读 |
|
[人工智能]pytorch:logistic regression(但是我们常把它理解为classification问题) |
将y=xw+b转换为分类问题,可以加一个sigmoid函数(也叫logistic),即y=(xw+b) 之后输出的值不再是一个连续的范围,而是约等于一个[0,1]的值。 即当p(y=0|x)接近于0的时候代表不是这一类,而接近于1的时候,代表是这一类。 对于classification问题,if p(y=1|x)>0.5,判别为1,否则判别为0 而对于多分类问题来说,就会有以下关系 ?这里我们有一个新的约束,。 如何生成这个约束条件? 我们可以使用之前介绍的softmax函数 ?可以从下边的笔记看出,本来是2,1倍数被放大,后来变成了0.7,0.1。直接从两倍变为了三倍。更容易分类了。 ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 6:04:23- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |