IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimati -> 正文阅读

[人工智能]GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimati

转载请注明作者和出处: http://blog.csdn.net/john_bh/

paper 地址:GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation
作者及团队: 王谷 & 季向阳 团队 & 清华大学 & 字节跳动 & 谷歌
会议及时间:CVPR 2021
code:https://git.io/GDR-Net
视频:

1. 主要贡献

在基于RGB 图像的 物体6DoF 姿态估计任务中,目前表现好的算法模型的是基于间接的方法,首先建立图像平面与物体坐标系的 2D-3D 坐标对应关系,然后使用 PnP/ RANSAC算法 。这种two-stage pipeline 方法不是 end-to-end 可训练的,因此很难用于许多需要可微分姿态的任务。另一方面,目前基于直接回归的方法不如基于几何的方法。

这种 correspondences 间接的方法虽然效果号,但是依然存在一些问题:

  1. 这种方法通常使用对应回归的代理目标进行训练(关键点),并不一定反映优化后的6DoF姿态误差的实际情况,例如具有相同误差,两组对应在描述完全不同的姿态时可能有相同的平均误差。
  2. 这种间接的方法对6DoF 姿态估计是不可微的,限制了学习。例如不能与从未标记的真实数据中进行的自我监督学习相结合,因为它们要求位姿的计算是完全可微的,以获得数据和位姿之间的信号。
  3. 当处理稠密对应时 RANSAC 迭代是比较耗时的(time-comsuming)

针对以上问题,作者提出一下解决方法:

  • 提出了一种简单而有效的几何引导直接回归方法网络(GDR-Net);
  • 提出从基于密集对应的中间几何表示中以端到端方式学习6D位姿网络 patch-PnP;

主要参考文章和技术:

  • 主要的网络结构参考作者自己之前的工作 CNPN (ICCV 2019 oral), 包括 Dynamic Zoom-in, Scale-Invariant representation for Translation Estimation (SITE);
  • M S R A M_{SRA} MSRA? 来自论文 EPOS (CVPR 2020);
  • 关键点的选取使用算法 farthest points sampling (FPS);
  • Rotation 的表示方法 R 6 d R_{6d} R6d? 参考论文 On the Continuity of Rotation Representations in Neural Networks (CVPR 2019)
  • allocentic representation of the rotation R a 6 d R_{a6d} Ra6d? 参考文章 3D-RCNN: Instance-level 3D Object Reconstruction via Render-and-Compare (CVPR 2018)
    在这里插入图片描述

2. Method

在这里插入图片描述
如图2所示,作者首先使用检测器检测图像中的物体,然后在训练中使用Dymic zoom in 对应的 RoI 进行数据增强,在测试的时候则不使用DZI; 然后 feed into 网络中提取几何特征( M 2 D ? 3 D M_{2D-3D} M2D?3D? M S R A M_{SRA} MSRA?),最后直接回归 6DoF 姿态估计。

2.1 Parameterization of 3D Rotation

存在不同的旋转向量 表示方法来表示 3D rotation。但是为许多表示表现出歧义,例如 R i ≠ R j R_i \neq R_j Ri??=Rj?, 但是却表示同样的旋转,所以一般选择 单位四元数(unit quaternion),对数四元数 ( log quaternion),基于李代数的向量 ( Lie algebra-based vectors )。然而,众所周知,对于三维旋转,所有具有四维或更小维的表示在欧几里得空间中都有不连续。当对旋转进行回归时,会引入一个接近不连续点的误差,这个误差往往会变得非常大。

为了克服这个限制,[65]在 S O ( 3 ) SO(3) SO(3)中提出了一种新的连续6维 R R R 表示,并且已经被证明它的有效性 (CosyPose ECCV2020)。具体来说,就是6维的表示 R 6 d R_{6d} R6d?定义为R的前两列:
在这里插入图片描述
给定一个 6维向量 R 6 d = [ r 1 ∣ r 2 ] R_{6d}=[r_1|r_2] R6d?=[r1?r2?],旋转矩阵 R = [ R . 1 ∣ R . 2 ∣ R . 3 ] R=[R_{.1|R_{.2}|R_{.3}}] R=[R.1R.2?R.3??] 可以通过计算得出:
在这里插入图片描述
? ( ? ) \phi(\bullet) ?(?)表示向量归一化操作。

鉴于这种表示的优点,作者使用 R 6 d R_{6d} R6d?参数化 3 D 3D 3D旋转。进一步提出让网络预测旋转 R 6 d R_{6d} R6d?的异中心表示,这种表示方式很受欢迎,因为它在物体的3D平移下是视点不变的,更适合处理 zoomed-in 的 RoI。注意,给定3D平移和摄像机固有K,自中心旋转可以很容易地从异中心旋转转换。

2.2 Parameterization of 3D Translation

直接回归三维空间的平移变量 t = [ t x , t y , t z ] t=[t_x,t_y,t_z] t=[tx?,ty?,tz?] 的实际效果不好,之前的工作通常将 translation 解耦到 3D质心投影到 2D位置 ( o x , o y ) (o_x,o_y) (ox?,oy?)和物体朝向相机的距离 t z t_z tz? 。给定相机内参 K K K,translation 可以通过反向投影计算的出:
在这里插入图片描述
之前有的方法将物体bounding box 的中心 c x , c y c_x,c_y cx?,cy? 近似等于物体中心 o x , o y o_x,o_y ox?,oy?, 使用参考相机距离估计 t z t_z tz? 。尽管如此,这并不适合处理zoom -in RoI ,对于网络来说 估计位置和尺度不变参数是至关重要的。因此作者采用 之前工作 CDPN 中的方法 SITE(scale invariant representation for translation estimation)。具体地,给定输入图像大小bounding box s o = m a x ( w , h ) s_o=max(w,h) so?=max(w,h) 和中心 c x , c y c_x,c_y cx?,cy?,放缩比例 r = s z o o m / s o r=s_{zoom}/s_o r=szoom?/so?,其中 s z o o n g s_{zoong} szoong? 表示 zoom-in 的大小,网络回归 尺度不变的translation 参数 t S I T E = [ δ x , δ y , δ z ] T t_{SITE}=[\delta_{x},\delta_{y},\delta_{z}]^{T} tSITE?=[δx?,δy?,δz?]T,如下:
在这里插入图片描述

2.3 Disentangled 6D Pose Loss

除了旋转和平移的参数化,损失函数的选择也是6D位姿优化的关键。而不是直接利用基于旋转和平移的距离(例如,角距离, L 1 L_1 L1? L 2 L_2 L2?距离),大多数作品采用基于ADD(-S)度量的 Point-Matching loss 。作者采用解耦6D 姿态损失:
在这里插入图片描述
为了解释对称物体,给定 $R $,对称下所有可能的ground-truth旋转的集合,进一步将损失扩展到对称感知公式 L R , s y m = m i n R ∈ R L R ( R ^ , R ˉ ) \mathcal{L}_{R,sym}=min_{R\in \mathcal{R} }\mathcal{L}_R(\hat R,\bar R) LR,sym?=minRR?LR?(R^,Rˉ)

2.4 Network Architecture

GDR-net 网络参考CDPN 的结构设计,保留了regressing M X Y Z M_{XYZ} MXYZ? M v i s M_{vis} Mvis?的层,同时去掉了分离的 translation head。此外,将 M S R A M_{SRA} MSRA?所需的通道添加到输出层。由于这些中间几何特征图都是的2D-3D对应图像,采用了一种简单而有效的2D卷积Patch-PnP模块直接从 M 2 D ? 3 D M_{2D-3D} M2D?3D? M S R A M_{SRA} MSRA?回归6D目标位姿。

Patch-PnP模块由三个卷积层组成,内核大小为 3 × 3 3\times 3 3×3,stride为2,每个卷积层后面是Group Normalization 和ReLU激活。两个
全连接(FC)层应用于flattened feature,将维数从8192减少到256。最后,两个平行的FC层分别输出参数化为 $R_{6d} $(Eq. 1)的3D旋转 R R R和参数化为 t S I T E t_{SITE} tSITE?(Eq. 4)的3D平移 t t t

2.5 Dense Correspondences Maps ( M 2 D ? 3 D M_{2D-3D} M2D?3D?)

为了计算密集对应映射 M 2 D ? 3 D M_{2D-3D} M2D?3D?,首先估计密集坐标映射( M X Y Z M_{XYZ} MXYZ?)。 M 2 D ? 3 D M_{2D-3D} M2D?3D?可以通过将 M X Y Z M_{XYZ} MXYZ? stacking onto 相应的2 d像素坐标 得到。特别是,给定物体的CAD模型, M X Y Z M_{XYZ} MXYZ?可以通过绘制模型的三维物体坐标得到相关的姿态。与[28,56]类似,让网络预测 M X Y Z M_{XYZ} MXYZ?的规范化表示。具体来说, M X Y Z M_{XYZ} MXYZ?的每个通道 通过 ( l x , l y , l z ) (l_x,l_y,l_z) (lx?,ly?,lz?) 正则化到 [ 0 , 1 ] [0,1] [0,1]之间,它是对应三维 CAD模型的 bounding box 的大小。

注意,M2D-3D不仅编码了2D-3D的对应关系,而且还明确地反映了对象的几何形状信息。此外,如前所述,由于M2D-3D是图像可以通过一个简单的2D卷积神经网络(Patch-PnP)来学习6D对象的姿态。

2.6 Surface Region Attention Maps (MSRA)

受[15]的启发,作者让网络预测表面区域,作为额外的模糊感知监督。但是,没有将它们与RANSAC耦合,而是在Patch-PnP框架中使用它们。

ground-truth 区域 M S R A M_{SRA} MSRA?可以从 M X Y Z M_{XYZ} MXYZ?采用 farthest points sampling 得到。

对于每个像素,对相应的区域进行分类,从而隐式地得到预测 M S R A M_{SRA} MSRA?中物体的对称性的概率。例如,如果一个像素由于对称面被分配给两个可能的碎片,对于每个片段,最小化这个赋值将返回0.5的概率。此外,利用$M_{SRA}$不仅减轻了歧义的影响,而且还充当了$M_{3d}$之上的辅助任务。换句话说,它简化了$M_{3d}$的学习,首先定位粗区域,然后回归更细的坐标。 利用 M S R A M_{SRA} MSRA?作为对称感知的注意来指导Patch-PnP的学习。

2.7 Geometry-guided 6D Object Pose Regression

利用基于图像的几何特征patch M S R A M_{SRA} MSRA? M 2 D ? 3 D M_{2D-3D} M2D?3D? 指导Path-PnP直接回归物体6DoF 姿态:
在这里插入图片描述
对标准化的 M X Y Z M_{XYZ} MXYZ?和可见mask M v i s M_{vis} Mvis? 采用L1损失,对 M S R A M_{SRA} MSRA?使用交叉熵损失(CE):
在这里插入图片描述
GDR-net 的损失函数可以总结为:
L G D R = L P o s e + L G e o m \mathcal {L}_{GDR}=\mathcal {L}_{Pose}+\mathcal {L}_{Geom} LGDR?=LPose?+LGeom?

2.8 Decoupling Detection and 6D Object Pose Estimation

GDR-net 主要关注物体姿态估计工作,允许直接在运行时中使用其他目标检测器的二维目标检测结果,无需改变或重新训练姿态网络。因此,作者采用简化的dynamic zoom-in (DZI)来解耦GDR-Net和目标探测器的训练。在训练期间,首先以25%的比例均匀地移动ground-truth包围盒的中心和比例。然后zoom-in 输入基于 r = 1 : 5 r = 1:5 r=1:5原始高宽比 的RoI(这确保了包含对象的区域大约是RoI的一半)。DZI还可以避免处理不同对象大小的需要。

3. 实验

3.1 实验结果

实验就不在赘述了,可以去看原文的实验结果。这里放上几张实验结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 运行时间

在 配置为 Intel 3.4 GHz CPU 和 NVIDIA2080Ti GPU 的 desktop 上,输入 640 × 480 640\times 480 640×480 图像,使用YOLOv3作为检测器,单个物体的推理时间大概22ms,8个物体大概35ms,其中包括15ms的目标检测。

4.结论

总的来讲,作者重新讨论了直接6D位姿回归的方法,并提出了一个新的GDR-Net来统一直接方法和基于几何的间接方法。其核心思想是利用中间几何特征 M 2 D ? 3 D M_{2D-3D} M2D?3D? M S R A M_{SRA} MSRA? 使用简单而有效的2D卷积Patch-PnP直接从几何制导回归6D位姿。这种end-to-end 的方法效果可达到two-stage 的效果,工作确实很优秀,另外作者团队一直都在做这样的的研究,从DeepIM ,CDPN, self-6D, GDR-Net,还有SO-Pose,论文质量都挺高的。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-17 12:45:44  更:2021-11-17 12:47:42 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/29 10:56:59-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码