IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度学习从入门到精通——GoogLeNetV1分类算法 -> 正文阅读

[人工智能]深度学习从入门到精通——GoogLeNetV1分类算法

模型优势

  • 引入了Inception结构(融合不同尺度的特征信息)
  • 使用1x1的卷积核进行降维以及映射处理
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大减少模型参数)
  • 利用平均池化来做输出
    完整模型图:
    在这里插入图片描述

不同尺度的特征信息

在inception中如何体现特征信息
在这里插入图片描述
利用不同的卷积核与池化操作来获得尺度信息,最后合并特征传入下一层网络中。

class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        '''

        :param in_channels:  输入的通道数
        :param ch1x1: 1x1 卷积核通道数
        :param ch3x3red:
        :param ch3x3:
        :param ch5x5red:
        :param ch5x5:
        :param pool_proj: 池化输出通道
        '''
        super(Inception, self).__init__()

        self.branch1x1 = BasicConv2d(in_channels=in_channels,out_channels= ch1x1, kernel_size=1)

        self.branch3x3 = nn.Sequential(
            BasicConv2d(in_channels=in_channels, out_channels=ch3x3red, kernel_size=1),
            BasicConv2d(in_channels= ch3x3red, out_channels=ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch5x5 = nn.Sequential(
            BasicConv2d(in_channels=in_channels, out_channels=ch5x5red, kernel_size=1),
            BasicConv2d(in_channels=ch5x5red, out_channels=ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.pool = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels=in_channels, out_channels=pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1x1(x)
        branch2 = self.branch3x3(x)
        branch3 = self.branch5x5(x)
        branch4 = self.pool(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)

采用了1*1卷积

  • 11 卷积在像素上,由于尺度大小是11,所以在像素层面计算基本不会变化,但是根据卷积的原理,11卷积之后,会进行通道上的混洗,因此11卷积额外提供了特征升维的功能。
  • 通过控制1*1卷积核的个数,可以合理的控制输出的大小,还提供了升维能力

池化层

利用平均池化化来代替全连接:

  • 可以直接输入不同形状的图片
  • 计算量大大减少
    完整inceptionV1
import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()

        self.aux_logits = aux_logits

        # 7*7,stride=2
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        # 1*1+3*3+maxpool
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        #  枝丫a
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        #  枝丫a
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)


        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        # 辅助分类器
        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        # 平均池化
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14

        if self.training and self.aux_logits:    # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:   # eval model lose this layer
            return x, aux2, aux1
        return x

    def _initialize_weights(self):

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        '''

        :param in_channels:  输入的通道数
        :param ch1x1: 1x1 卷积核通道数
        :param ch3x3red:
        :param ch3x3:
        :param ch5x5red:
        :param ch5x5:
        :param pool_proj: 池化输出通道
        '''
        super(Inception, self).__init__()

        self.branch1x1 = BasicConv2d(in_channels=in_channels,out_channels= ch1x1, kernel_size=1)

        self.branch3x3 = nn.Sequential(
            BasicConv2d(in_channels=in_channels, out_channels=ch3x3red, kernel_size=1),
            BasicConv2d(in_channels= ch3x3red, out_channels=ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch5x5 = nn.Sequential(
            BasicConv2d(in_channels=in_channels, out_channels=ch5x5red, kernel_size=1),
            BasicConv2d(in_channels=ch5x5red, out_channels=ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.pool = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels=in_channels, out_channels=pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1x1(x)
        branch2 = self.branch3x3(x)
        branch3 = self.branch5x5(x)
        branch4 = self.pool(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x


class BasicConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):

        x = self.conv(x)
        x = self.relu(x)
        return x


if __name__ == '__main__':
    model = GoogLeNet()
    print(model)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-19 17:37:57  更:2021-11-19 17:39:54 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/23 14:50:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计