k-means需要有数据,中心点个数是需要人为指定的,位置可以随机初始化,但是还需要度量到聚类中心的距离。这里怎么度量这个距离是很关键的。 距离度量如果使用标准的欧氏距离,大盒子会比小盒子产生更多的错误。例 ?。因此这里使用其他的距离度量公式。聚类的目的是anchor boxes和临近的ground truth有更大的IOU值,这和anchor box的尺寸没有直接关系。自定义的距离度量公式: ? 到聚类中心的距离越小越好,但IOU值是越大越好,所以使用 1 - IOU,这样就保证距离越小,IOU值越大。
??使用的聚类原始数据是只有标注框的检测数据集,YOLOv2、v3都会生成一个包含标注框位置和类别的TXT文件,其中每行都包含 ?,即ground truth boxes相对于原图的坐标, ?是框的中心点, ?是框的宽和高,N是所有标注框的个数; ?首先给定k个聚类中心点 ?,这里的 ?是anchor boxes的宽和高尺寸,由于anchor boxes位置不固定,所以没有(x,y)的坐标,只有宽和高; ?计算每个标注框和每个聚类中心点的距离 d=1-IOU(标注框,聚类中心),计算时每个标注框的中心点都与聚类中心重合,这样才能计算IOU值,即 ?。将标注框分配给“距离”最近的聚类中心; ?所有标注框分配完毕以后,对每个簇重新计算聚类中心点,计算方式为 ?, ?是第i个簇的标注框个数,就是求该簇中所有标注框的宽和高的平均值。 重复第3、4步,直到聚类中心改变量很小。
代码实现主要是AlexeyAB/darknet中scripts/gen_anchors.py,这里根据yolov2,yolov3的版本不同进行部分修改。yolov2的配置文件yolov2.cfg需要的anchors是相对特征图的,值很小基本都小于13;yolov3的配置文件yolov3.cfg需要的3个anchors是相对于原图来说的,相对都比较大。还有输入图片的大小(32的倍数)对于输出也是有影响的。 例: yolov2.cfg中[region] anchors = ?0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828 yolov3.cfg中[region] anchors = 10,13, ?16,30, ?33,23, ?30,61, ?62,45, ?59,119, ?116,90, ?156,198, ?373,326
from os import listdir
from os.path import isfile, join
import argparse
#import cv2
import numpy as np
import sys
import os
import shutil
import random
import math
def IOU(x,centroids):
??? '''
??? :param x: 某一个ground truth的w,h
??? :param centroids:? anchor的w,h的集合[(w,h),(),...],共k个
??? :return: 单个ground truth box与所有k个anchor box的IoU值集合
??? '''
??? IoUs = []
??? w, h = x? # ground truth的w,h
??? for centroid in centroids:
??????? c_w,c_h = centroid?? #anchor的w,h
??????? if c_w>=w and c_h>=h:?? #anchor包围ground truth
??????????? iou = w*h/(c_w*c_h)
??????? elif c_w>=w and c_h<=h:??? #anchor宽矮
??????????? iou = w*c_h/(w*h + (c_w-w)*c_h)
??????? elif c_w<=w and c_h>=h:??? #anchor瘦长
??????????? iou = c_w*h/(w*h + c_w*(c_h-h))
??????? else: #ground truth包围anchor???? means both w,h are bigger than c_w and c_h respectively
??????????? iou = (c_w*c_h)/(w*h)
??????? IoUs.append(iou) # will become (k,) shape
??? return np.array(IoUs)
def avg_IOU(X,centroids):
??? '''
??? :param X: ground truth的w,h的集合[(w,h),(),...]
??? :param centroids: anchor的w,h的集合[(w,h),(),...],共k个
??? '''
??? n,d = X.shape
??? sum = 0.
??? for i in range(X.shape[0]):
??????? sum+= max(IOU(X[i],centroids))? #返回一个ground truth与所有anchor的IoU中的最大值
??? return sum/n??? #对所有ground truth求平均
def write_anchors_to_file(centroids,X,anchor_file,input_shape,yolo_version):
??? '''
??? :param centroids: anchor的w,h的集合[(w,h),(),...],共k个
??? :param X: ground truth的w,h的集合[(w,h),(),...]
??? :param anchor_file: anchor和平均IoU的输出路径
??? '''
??? f = open(anchor_file,'w')
???
??? anchors = centroids.copy()
??? print(anchors.shape)
??? if yolo_version=='yolov2':
??????? for i in range(anchors.shape[0]):
??????????? #yolo中对图片的缩放倍数为32倍,所以这里除以32,
??????????? # 如果网络架构有改变,根据实际的缩放倍数来
??????????? #求出anchor相对于缩放32倍以后的特征图的实际大小(yolov2)
??????????? anchors[i][0]*=input_shape/32.
??????????? anchors[i][1]*=input_shape/32.
??? elif yolo_version=='yolov3':
??????? for i in range(anchors.shape[0]):
??????????? #求出yolov3相对于原图的实际大小
??????????? anchors[i][0]*=input_shape
??????????? anchors[i][1]*=input_shape
??? else:
??????? print("the yolo version is not right!")
??????? exit(-1)
??? widths = anchors[:,0]
??? sorted_indices = np.argsort(widths)
??? print('Anchors = ', anchors[sorted_indices])
???????
??? for i in sorted_indices[:-1]:
??????? f.write('%0.2f,%0.2f, '%(anchors[i,0],anchors[i,1]))
??? #there should not be comma after last anchor, that's why
??? f.write('%0.2f,%0.2f\n'%(anchors[sorted_indices[-1:],0],anchors[sorted_indices[-1:],1]))
???
??? f.write('%f\n'%(avg_IOU(X,centroids)))
??? print()
def kmeans(X,centroids,eps,anchor_file,input_shape,yolo_version):
???
??? N = X.shape[0] #ground truth的个数
??? iterations = 0
??? print("centroids.shape",centroids)
??? k,dim = centroids.shape? #anchor的个数k以及w,h两维,dim默认等于2
??? prev_assignments = np.ones(N)*(-1)??? #对每个ground truth分配初始标签
??? iter = 0
??? old_D = np.zeros((N,k))? #初始化每个ground truth对每个anchor的IoU
??? while True:
??????? D = []
??????? iter+=1??????????
??????? for i in range(N):
??????????? d = 1 - IOU(X[i],centroids)
??????????? D.append(d)
??????? D = np.array(D) # D.shape = (N,k)? 得到每个ground truth对每个anchor的IoU
???????
??????? print("iter {}: dists = {}".format(iter,np.sum(np.abs(old_D-D))))? #计算每次迭代和前一次IoU的变化值
???????????
?? ?????#assign samples to centroids
??????? assignments = np.argmin(D,axis=1)? #将每个ground truth分配给距离d最小的anchor序号
???????
??????? if (assignments == prev_assignments).all() :? #如果前一次分配的结果和这次的结果相同,就输出anchor以及平均IoU
??????????? print("Centroids = ",centroids)
??????????? write_anchors_to_file(centroids,X,anchor_file,input_shape,yolo_version)
??????????? return
??????? #calculate new centroids
??????? centroid_sums=np.zeros((k,dim),np.float)?? #初始化以便对每个簇的w,h求和
??????? for i in range(N):
??????????? centroid_sums[assignments[i]]+=X[i]???????? #将每个簇中的ground truth的w和h分别累加
??????? for j in range(k):??????????? #对簇中的w,h求平均
??????????? centroids[j] = centroid_sums[j]/(np.sum(assignments==j)+1)
???????
??????? prev_assignments = assignments.copy()????
??????? old_D = D.copy()?
def main(argv):
??? parser = argparse.ArgumentParser()
??? parser.add_argument('-filelist', default = r'scripts\train.txt',
??????????????????????? help='path to filelist\n' ) #这个文件是由运行scripts文件夹中的???
???????????????????????????? #voc_label.py文件得到的,scripts文件夹中会生成几个TXT文件。
???????????????????????????? #python voc_label.py
???????????????????????????? #目前yolo打标签可以使用labelimg中的yolo格式
??? parser.add_argument('-output_dir', default = r'\scripts', type = str,
??????????????????????? help='Output anchor directory\n' )
??? parser.add_argument('-num_clusters', default = 0, type = int,
??????????????????????? help='number of clusters\n' )
??? '''
??? 需要注意的是yolov2输出的值比较小是相对特征图来说的,
??? yolov3输出值较大是相对原图来说的,
??? 所以yolov2和yolov3的输出是有区别的
??? '''
??? parser.add_argument('-yolo_version', default='yolov2', type=str,
??????????????????????? help='yolov2 or yolov3\n')
??? parser.add_argument('-yolo_input_shape', default=416, type=int,
???????????????? ???????help='input images shape,multiples of 32. etc. 416*416\n')
??? args = parser.parse_args()
???
??? if not os.path.exists(args.output_dir):
??????? os.mkdir(args.output_dir)
??? f = open(args.filelist)
?
??? lines = [line.rstrip('\n') for line in f.readlines()]
???
??? annotation_dims = []
??? for line in lines:
??????? line = line.replace('JPEGImages','labels')
??????? line = line.replace('.jpg','.txt')
??????? line = line.replace('.png','.txt')
?????? ?print(line)
??????? f2 = open(line)
??????? for line in f2.readlines():
??????????? line = line.rstrip('\n')
??????????? w,h = line.split(' ')[3:]???????????
??????????? #print(w,h)
??????????? annotation_dims.append((float(w),float(h)))
??? annotation_dims = np.array(annotation_dims) #保存所有ground truth框的(w,h)
?
??? eps = 0.005
??? if args.num_clusters == 0:
??????? for num_clusters in range(1,11): #we make 1 through 10 clusters
??????????? anchor_file = join( args.output_dir,'anchors%d.txt'%(num_clusters))
??????????? indices = [ random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)]
??????????? centroids = annotation_dims[indices]
??????????? kmeans(annotation_dims,centroids,eps,anchor_file,args.yolo_input_shape,args.yolo_version)
??????????? print('centroids.shape', centroids.shape)
??? else:
??????? anchor_file = join( args.output_dir,'anchors%d.txt'%(args.num_clusters))
??????? indices = [ random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)]
??????? centroids = annotation_dims[indices]
??????? kmeans(annotation_dims,centroids,eps,anchor_file,args.yolo_input_shape,args.yolo_version)
??????? print('centroids.shape', centroids.shape)
if __name__=="__main__":
??? main(sys.argv)
这是其中的yolov3的结果?
? ?
参考的内容:https://github.com/AlexeyAB/darknet#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files
|