IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 创新实训-生物大分子序列分析平台08 -> 正文阅读

[人工智能]创新实训-生物大分子序列分析平台08

创新实训-生物大分子序列分析平台08


2021SC@SDUSC

代码分析

Hugging Face pytorch版本-bert模型代码

BertTokenizer类
Tokenization分词,是NLP任务中的首要工作。对于文本这种非结构化的数据,需要将其分割为最小的且具有完整语义的单位——词,来进行研究。接下来看一下bert的分词器——BertTokenizer。
bert的分词器主要是基于WordPiece算法。WordPiece算法是一种subword模型,它在构造词表时划分粒度介于词与字符之间,比如looked可以会被划分为look和ed两个词。这样就避免了传统构造此表方法中,比如looking、looked这种语义相同而时态不同的词的大量出现,造成词表过大的问题。

class BertTokenizer(PreTrainedTokenizer):
    r"""
    Construct a BERT tokenizer. Based on WordPiece.
    This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
    Users should refer to this superclass for more information regarding those methods.

WordPiece算法是如何构建词表的呢?

  1. 获得足够大的语料库。

  2. 定义所需的子词词汇量。

  3. 将单词拆分为字符序列。

  4. 用文本中的所有字符初始化词汇表。

  5. 根据词汇建立语言模型。

  6. 通过将当前词汇表中的两个单元组合以将词汇表增加一个来生成新的子词单元。 从所有可能性中选择新的子词单位,这会在添加到模型时最大程度地增加训练数据的可能性。

  7. 重复第5步,直到达到子词词汇量(在第2步中定义),或者似然性增加降至某个阈值以下。
    https://zhuanlan.zhihu.com/p/355338876

在第6步合并子词的过程中,会计算相邻两个子词的相关性,每次将相关性最高,也就是经常一起出现的子词合并。

WordPiece许多方面与BPE相似,不同之处在于它基于似然而不是下一个最高频率对形成一个新的子字,这个似然值表示来两个子字的相关性,WordPiece会合并相关性最高的两个子字。
https://zhuanlan.zhihu.com/p/191648421

一些参数:
do_lower_case是否将输入转换为小写;
do_basic_tokenize是否在WordPiece前做基本分词

def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        tokenize_chinese_chars=True,
        strip_accents=None,
        **kwargs
    ):
        super().__init__(
            do_lower_case=do_lower_case,
            do_basic_tokenize=do_basic_tokenize,
            never_split=never_split,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            tokenize_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            **kwargs,
        )

       
        self.vocab = load_vocab(vocab_file)
        self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
            self.basic_tokenizer = BasicTokenizer(
                do_lower_case=do_lower_case,
                never_split=never_split,
                tokenize_chinese_chars=tokenize_chinese_chars,
                strip_accents=strip_accents,
            )
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)

load_vocab方法读入词文件读入每一行,构造了一个有序词典——collections.OrderedDict()可以按照元素的插入顺序进行排序。而且如果有键重复插入的情况,则对值进行覆盖,并按照首次插入顺序进行保存。

def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    index = 0
    with open(vocab_file, "r", encoding="utf-8") as reader:
        while True:
            token = reader.readline()
            if not token:
                break
            token = token.strip()
            vocab[token] = index
            index += 1
    return vocab

class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-22 12:20:40  更:2021-11-22 12:23:14 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 5:13:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码