看不懂,好难啊!!!
详情请参考
https://andyguo.blog.csdn.net/article/details/119753719
一、RNN和Transformer的不同
二、从整体宏观来理解 Transformer
三、从细节来理解 Transformer
3.1 Transformer 的输入
3.2?Encoder(编码器)
3.3 Self-Attention 整体理解
四、Self-Attention 的细节
4.1 计算Query 向量,Key 向量,Value 向量
4.2 计算 Attention Score(注意力分数)
五、使用矩阵计算 Self-Attention
六、多头注意力机制(multi-head attention)
七、代码实现矩阵计算 Attention
7.1 使用矩阵实现多组注意力的并行计算(用pytorch自带的MultiheadAttention函数)
7.2 手动实现计算 Attention
7.3 关键代码
八、其他部分
8.1 使用位置编码来表示序列的顺序
8.2 Decoder和Cross Attention
8.3 最后的线性层和 Softmax 层
九、pytorch手写transformer
位置编码
三、多头注意力机制
3.1 拆开看多头注意力机制
(1)在 RNN 中,每一个 time step 的计算都依赖于上一个 time step 的输出,这就使得所有的 time step 必须串行化,无法并行计算,如下图所示。
?2)transformer模型的其中一个优点,就是使得模型训练过程能够并行计算。在Transformer 中,所有 time step 的数据,都是经过 Self Attention 计算,使得整个运算过程可以并行化计算。
?
?首先,我们将整个模型视为黑盒。在机器翻译任务中,接收一种语言的句子作为输入,然后将其翻译成其他语言输出。
?中间部分的 Transformer 可以拆分为 2 部分:左边是编码部分(encoding component),右边是解码部分(decoding component)。
?其中编码部分是多层的编码器(Encoder)组成
同理,解码部分也是由多层的解码器
?
encoder由多层编码器组成,每层编码器在结构上都是一样的,但不同层编码器的权重参数是不同的。每层编码器里面,主要由以下两部分组成
- Self-Attention Layer
- Feed Forward Neural Network(前馈神经网络,缩写为 FFNN)
?输入编码器的文本数据,首先会经过一个 Self Attention 层:这个层处理一个词的时候,不仅会使用这个词本身的信息,也会使用句子中其他词的信息
接下来,Self Attention 层的输出会经过前馈神经网络。
同理,解码器也具有这两层,但是这两层中间还插入了一个 Encoder-Decoder Attention 层——这个层能帮助解码器聚焦于输入句子的相关部分
实际中向量一般是 256 或者 512 维。为了简化起见,这里将每个词的转换为一个 4 维的词向量。
那么整个输入的句子是一个向量列表,其中有 3 个词向量。
在实际中,每个句子的长度不一样,我们会取一个适当的值,作为向量列表的长度。
如果一个句子达不到这个长度,那么就填充全为 0 的词向量;如果句子超出这个长度,则做截断。
3.2?Encoder(编码器)
?编码器(Encoder)接收的输入都是一个向量列表,输出也是大小同样的向量列表,然后接着输入下一个编码器。
第一 个/层 编码器的输入是词向量,而后面的编码器的输入是上一个编码器的输出。下面,我们来看这个向量列表在编码器里面是如何流动的。
?每个单词转换成一个向量之后,进入self-attention层,每个位置的单词得到新向量,然后再输入FFN神经网络。
?每个位置的词都经过 Self Attention 层,得到的每个输出向量都单独经过前馈神经网络层,每个向量经过的前馈神经网络都是一样的
3.3 Self-Attention 整体理解
假设我们想要翻译的句子是:
The animal didn't cross the street because it was too tired
这个句子中的?it?是一个指代词,那么?it?指的是什么呢?它是指?animal?还是street?这个问题对人来说,是很简单的,但是对算法来说并不是那么容易。当模型在处理(翻译)it 的时候,Self Attention机制能够让模型把it和animal关联起来。
而 Transformer 使用Self Attention机制,会把其他单词的理解融入处理当前的单词。
四、Self-Attention 的细节
4.1 计算Query 向量,Key 向量,Value 向量
计算 Self Attention 的第 1 步是:对输入编码器的每个词向量,都创建 3 个向量,分别是:Query 向量,Key 向量,Value 向量。
这 3 个向量是词向量分别和 3 个矩阵相乘得到的,而这个3个矩阵是我们要学习的参数。
注意,这 3 个新得到的向量一般比原来的词向量的长度更小。
?上图中,有两个词向量:Thinking 的词向量 x1 和 Machines 的词向量 x2。以 x1 为例,X1 乘以 WQ 得到 q1
q1 就是 X1 对应的 Query 向量。同理,X1 乘以 WK 得到 k1,k1 是 X1 对应的 Key 向量;X1 乘以 WV 得到 v1,v1 是 X1 对应的 Value 向量。
Query 向量,Key 向量,Value 向量是什么含义呢?
其实它们就是 3 个向量,给它们加上一个名称,可以让我们更好地理解 Self-Attention 的计算过程和逻辑含义
4.2 计算 Attention Score(注意力分数)
第 2 步,是计算 Attention Score(注意力分数)。
假设我们现在计算第一个词?Thinking?的 Attention Score(注意力分数),需要根据?Thinking?这个词,对句子中的其他每个词都计算一个分数。
这些分数决定了我们在编码Thinking这个词时,需要对句子中其他位置的每个词放置多少的注意力。
这些分数,是通过计算对应的 Query 向量和其他位置的每个词的 Key 向量的点积,而得到的。
?
?第 4 步,接着把这些分数经过一个 Softmax 层,Softmax可以将分数归一化,这样使得分数都是正数并且加起来等于 1。
?这些分数决定了在编码当前位置(这里的例子是第一个位置)的词时,对所有位置的词分别有多少的注意力。
第 5 步,得到每个位置的分数后,将每个分数分别与每个 Value 向量相乘。这种做法背后的直觉理解就是:对于分数高的位置,相乘后的值就越大,我们把更多的注意力放到了它们身上;
第 6 步是把上一步得到的向量相加,就得到了 Self Attention 层在这个位置(这里的例子是第一个位置)的输出。
五、使用矩阵计算 Self-Attention
第一步是计算 Query,Key,Value 的矩阵。
?
六、多头注意力机制(multi-head attention)
它扩展了模型关注不同位置的能力。在上面的例子中,第一个位置的输出 z1 包含了句子中其他每个位置的很小一部分信息,但 z1 可能主要是由第一个位置的信息决定的。当我们翻译句子:The animal didn’t cross the street because it was too tired时,我们想让机器知道其中的it指代的是什么。这时,多头注意力机制会有帮助。
?在多头注意力机制中,我们为每组注意力维护单独的 WQ, WK, WV 权重矩阵。将输入 X 和每组注意力的WQ, WK, WV 相乘,得到 8 组 Q, K, V 矩阵。 接着,我们把每组 K, Q, V 计算得到每组的 Z 矩阵,就得到 8 个 Z 矩阵。
?接下来就有点麻烦了,因为前馈神经网络层接收的是 1 个矩阵(其中每行的向量表示一个词),而不是 8 个矩阵。所以我们需要一种方法,把 8 个矩阵整合为一个矩阵。 怎么才能做到呢?我们把矩阵拼接起来,然后和另一个权重矩阵W Q相乘。
?
- 把 8 个矩阵 {Z0,Z1…,Z7} 拼接起来
- 把拼接后的矩阵和 WO 权重矩阵相乘
- 得到最终的矩阵 Z,这个矩阵包含了所有 attention heads(注意力头) 的信息。这个矩阵会输入到 FFNN (Feed Forward Neural Network)层。
?
?
?
七、代码实现矩阵计算 Attention
torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None)
PyTorch 提供了 MultiheadAttention 来实现 attention 的计算。
- embed_dim:最终输出的 K、Q、V 矩阵的维度,这个维度需要和词向量的维度一样
- num_heads:设置多头注意力的数量。如果设置为 1,那么只使用一组注意力。如果设置为其他数值,那么 - - num_heads 的值需要能够被 embed_dim 整除
- dropout:这个 dropout 加在 attention score 后面
为什么?num_heads ?的值需要能够被?embed_dim ?整除:
这是为了把词的隐向量长度平分到每一组,这样多组注意力也能够放到一个矩阵里,从而并行计算多头注意力。
7.1 使用矩阵实现多组注意力的并行计算(用pytorch自带的MultiheadAttention函数)
?利用上面提的pytorch中的定义?MultiheadAttention ?的对象后,调用时传入的参数如下
forward(query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None)
query:对应于 Key 矩阵,形状是 (L,N,E) 。其中 L 是输出序列长度,N 是 batch size,E 是词向量的维度
key:对应于 Key 矩阵,形状是 (S,N,E) 。其中 S 是输入序列长度,N 是 batch size,E 是词向量的维度
value:对应于 Value 矩阵,形状是 (S,N,E) 。其中 S 是输入序列长度,N 是 batch size,E 是词向量的维度
key_padding_mask:如果提供了这个参数,那么计算 attention score 时,忽略 Key 矩阵中某些 padding 元素,不参与计算 attention
- 如果 key_padding_mask 是 ByteTensor,那么非 0 元素对应的位置会被忽略
- 如果 key_padding_mask 是 BoolTensor,那么 True 对应的位置会被忽略
attn_mask:计算输出时,忽略某些位置。形状可以是 2D (L,S),或者 3D (N?numheads,L,S)。其中 L 是输出序列长度,S 是输入序列长度,N 是 batch size。
如果 attn_mask 是 ByteTensor,那么非 0 元素对应的位置会被忽略 如果 attn_mask 是 BoolTensor,那么 True 对应的位置会被忽略
?
import torch
from torch import nn
## nn.MultiheadAttention 输入第0维为length
# batch_size 为 64,有 12 个词,每个词的 Query 向量是 300 维
query = torch.rand(12,64,300)
# batch_size 为 64,有 10 个词,每个词的 Key 向量是 300 维
key = torch.rand(10,64,300)
# batch_size 为 64,有 10 个词,每个词的 Value 向量是 300 维
value= torch.rand(10,64,300)
embed_dim = 300
num_heads = 10
# 输出是 (attn_output, attn_output_weights)
multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
attn_output = multihead_attn(query, key, value)[0]
# output: torch.Size([12, 64, 300])
# batch_size 为 64,有 12 个词,每个词的向量是 300 维
print(attn_output.shape)
# 打印出torch.Size([12, 64, 300])
?embed_dim是最终输出的 K、Q、V 矩阵的维度,这个维度需要和词向量的维度一样;多头注意力的数量num_heads值需要能够被 embed_dim 整除。
7.2 手动实现计算 Attention
在 PyTorch 提供的 MultiheadAttention 中,第 1 维是句子长度,第 2 维是 batch size。这里我们的代码实现中,第 1 维是 batch size,第 2 维是句子长度。
import torch
from torch import nn
class MultiheadAttention(nn.Module):
# n_heads:多头注意力的数量
# hid_dim:每个词输出的向量维度
def __init__(self, hid_dim, n_heads, dropout):
super(MultiheadAttention, self).__init__()
self.hid_dim = hid_dim
self.n_heads = n_heads
# 强制 hid_dim 必须整除 h
assert hid_dim % n_heads == 0
# 定义 W_q 矩阵
self.w_q = nn.Linear(hid_dim, hid_dim)
# 定义 W_k 矩阵
self.w_k = nn.Linear(hid_dim, hid_dim)
# 定义 W_v 矩阵
self.w_v = nn.Linear(hid_dim, hid_dim)
self.fc = nn.Linear(hid_dim, hid_dim)
self.do = nn.Dropout(dropout)
# 缩放
self.scale = torch.sqrt(torch.FloatTensor([hid_dim // n_heads]))
def forward(self, query, key, value, mask=None):
# K: [64,10,300], batch_size 为 64,有 12 个词,每个词的 Query 向量是 300 维
# V: [64,10,300], batch_size 为 64,有 10 个词,每个词的 Query 向量是 300 维
# Q: [64,12,300], batch_size 为 64,有 10 个词,每个词的 Query 向量是 300 维
bsz = query.shape[0]
Q = self.w_q(query)
K = self.w_k(key)
V = self.w_v(value)
# 这里把 K Q V 矩阵拆分为多组注意力,变成了一个 4 维的矩阵
# 最后一维就是是用 self.hid_dim // self.n_heads 来得到的,表示每组注意力的向量长度, 每个 head 的向量长度是:300/6=50
# 64 表示 batch size,6 表示有 6组注意力,10 表示有 10 词,50 表示每组注意力的词的向量长度
# K: [64,10,300] 拆分多组注意力 -> [64,10,6,50] 转置得到 -> [64,6,10,50]
# V: [64,10,300] 拆分多组注意力 -> [64,10,6,50] 转置得到 -> [64,6,10,50]
# Q: [64,12,300] 拆分多组注意力 -> [64,12,6,50] 转置得到 -> [64,6,12,50]
# 转置是为了把注意力的数量 6 放到前面,把 10 和 50 放到后面,方便下面计算
Q = Q.view(bsz, -1, self.n_heads, self.hid_dim //
self.n_heads).permute(0, 2, 1, 3)
K = K.view(bsz, -1, self.n_heads, self.hid_dim //
self.n_heads).permute(0, 2, 1, 3)
V = V.view(bsz, -1, self.n_heads, self.hid_dim //
self.n_heads).permute(0, 2, 1, 3)
# 第 1 步:Q 乘以 K的转置,除以scale
# [64,6,12,50] * [64,6,50,10] = [64,6,12,10]
# attention:[64,6,12,10]
attention = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
# 把 mask 不为空,那么就把 mask 为 0 的位置的 attention 分数设置为 -1e10
if mask is not None:
attention = attention.masked_fill(mask == 0, -1e10)
# 第 2 步:计算上一步结果的 softmax,再经过 dropout,得到 attention。
# 注意,这里是对最后一维做 softmax,也就是在输入序列的维度做 softmax
# attention: [64,6,12,10]
attention = self.do(torch.softmax(attention, dim=-1))
# 第三步,attention结果与V相乘,得到多头注意力的结果
# [64,6,12,10] * [64,6,10,50] = [64,6,12,50]
# x: [64,6,12,50]
x = torch.matmul(attention, V)
# 因为 query 有 12 个词,所以把 12 放到前面,把 5 和 60 放到后面,方便下面拼接多组的结果
# x: [64,6,12,50] 转置-> [64,12,6,50]
x = x.permute(0, 2, 1, 3).contiguous()
# 这里的矩阵转换就是:把多组注意力的结果拼接起来
# 最终结果就是 [64,12,300]
# x: [64,12,6,50] -> [64,12,300]
x = x.view(bsz, -1, self.n_heads * (self.hid_dim // self.n_heads))
x = self.fc(x)
return x
# batch_size 为 64,有 12 个词,每个词的 Query 向量是 300 维
query = torch.rand(64, 12, 300)
# batch_size 为 64,有 12 个词,每个词的 Key 向量是 300 维
key = torch.rand(64, 10, 300)
# batch_size 为 64,有 10 个词,每个词的 Value 向量是 300 维
value = torch.rand(64, 10, 300)
attention = MultiheadAttention(hid_dim=300, n_heads=6, dropout=0.1)
output = attention(query, key, value)
## output: torch.Size([64, 12, 300])
print(output.shape)
# 打印出torch.Size([64, 12, 300])
7.3 关键代码
# 这里把 K Q V 矩阵拆分为多组注意力,变成了一个 4 维的矩阵
# 最后一维就是是用 self.hid_dim // self.n_heads 来得到的,表示每组注意力的向量长度, 每个 head 的向量长度是:300/6=50
# 64 表示 batch size,6 表示有 6组注意力,10 表示有 10 个词,50 表示每组注意力的词的向量长度
# K: [64,10,300] 拆分多组注意力 -> [64,10,6,50] 转置得到 -> [64,6,10,50]
# V: [64,10,300] 拆分多组注意力 -> [64,10,6,50] 转置得到 -> [64,6,10,50]
# Q: [64,12,300] 拆分多组注意力 -> [64,12,6,50] 转置得到 -> [64,6,12,50]
# 转置是为了把注意力的数量 6 放到前面,把 10 和 50 放到后面,方便下面计算
Q = Q.view(bsz, -1, self.n_heads, self.hid_dim //
self.n_heads).permute(0, 2, 1, 3)
K = K.view(bsz, -1, self.n_heads, self.hid_dim //
self.n_heads).permute(0, 2, 1, 3)
V = V.view(bsz, -1, self.n_heads, self.hid_dim //
self.n_heads).permute(0, 2, 1, 3)
经过 attention 计算得到 x 的形状是 `[64,12,6,50]`,64 表示 batch size,6 表示有 6组注意力,10 表示有 10 个词,50 表示每组注意力的词的向量长度。把这个矩阵转换为 `[64,12,300]`的矩阵,就是相当于把多组注意力的结果拼接起来。
这里的矩阵转换就是:把多组注意力的结果拼接起来,最终结果就是 [64,12,300],x: [64,12,6,50] -> [64,12,300]
x = x.view(bsz, -1, self.n_heads * (self.hid_dim // self.n_heads))
八、其他部分
8.1 使用位置编码来表示序列的顺序
目前为止,我们阐述的模型中缺失了一个东西,那就是表示序列中单词顺序的方法。
为了解决这个问题,Transformer 模型对每个输入的向量都添加了一个向量。这些向量遵循模型学习到的特定模式,有助于确定每个单词的位置,或者句子中不同单词之间的距离。这种做法背后的直觉是:将这些表示位置的向量添加到词向量中,得到了新的向量,这些新向量映射到 Q/K/V,然后计算点积得到 attention 时,可以提供有意义的信息。
?为了让模型了解单词的顺序,我们添加了带有位置编码的向量–这些向量的值遵循特定的模式。 如果我们假设词向量的维度是 4,那么带有位置编码的向量可能如下所示:
8.2 Decoder和Cross Attention
上面说了,编码器一般有多层,第一个编码器的输入是一个序列,最后一个编码器输出是一组注意力向量 K 和 V。这些注意力向量将会输入到每个解码器的Encoder-Decoder Attention层,这有助于解码器把注意力集中中输入序列的合适位置
?解码器中的 Self Attention 层,和编码器中的 Self Attention 层不太一样:在解码器里,Self Attention 层只允许关注到输出序列中早于当前位置之前的单词。具体做法是:在 Self Attention 分数经过 Softmax 层之前,屏蔽当前位置之后的那些位置。
8.3 最后的线性层和 Softmax 层
?线性层就是一个普通的全连接神经网络,可以把解码器输出的向量,映射到一个更长的向量,这个向量称为?logits 向量。
?现在假设我们的模型有 10000 个英语单词(模型的输出词汇表),这些单词是从训练集中学到的。因此 logits 向量有 10000 个数字,每个数表示一个单词的分数。我们就是这样去理解线性层的输出。然后,Softmax 层会把这些分数转换为概率
?所有需要的包的导入:
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
import torch.nn.functional as F
from typing import Optional, Tuple, Any
from typing import List, Optional, Tuple
import math
import warnings
X = torch.zeros((2,4),dtype=torch.long)
embed = nn.Embedding(10,8)
print(embed(X).shape)
# 打印出torch.Size([2, 4, 8])
位置编码
Tensor = torch.Tensor
def positional_encoding(X, num_features, dropout_p=0.1, max_len=512) -> Tensor:
r'''
给输入加入位置编码
参数:
- num_features: 输入进来的维度
- dropout_p: dropout的概率,当其为非零时执行dropout
- max_len: 句子的最大长度,默认512
形状:
- 输入: [batch_size, seq_length, num_features]
- 输出: [batch_size, seq_length, num_features]
例子:
>>> X = torch.randn((2,4,10))
>>> X = positional_encoding(X, 10)
>>> print(X.shape)
>>> torch.Size([2, 4, 10])
'''
dropout = nn.Dropout(dropout_p)
P = torch.zeros((1,max_len,num_features))
X_ = torch.arange(max_len,dtype=torch.float32).reshape(-1,1) / torch.pow(
10000,
torch.arange(0,num_features,2,dtype=torch.float32) /num_features)
P[:,:,0::2] = torch.sin(X_)
P[:,:,1::2] = torch.cos(X_)
X = X + P[:,:X.shape[1],:].to(X.device)
return dropout(X)
# 位置编码例子
X = torch.randn((2,4,10))
X = positional_encoding(X, 10)
print(X.shape)
# 打印出torch.Size([2, 4, 10])
三、多头注意力机制
3.1 拆开看多头注意力机制
多头注意力类主要成分是:参数初始化、multi_head_attention_forward
if self._qkv_same_embed_dim is False:
# 初始化前后形状维持不变
# (seq_length x embed_dim) x (embed_dim x embed_dim) ==> (seq_length x embed_dim)
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim)))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim)))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim)))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim)))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
# 后期会将所有头的注意力拼接在一起然后乘上权重矩阵输出
# out_proj是为了后期准备的
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self._reset_parameters()
torch.empty是按照所给的形状形成对应的tensor,特点是填充的值还未初始化,类比torch.randn
在PyTorch中,变量类型是tensor的话是无法修改值的,而Parameter()函数可以看作为一种类型转变函数,将不可改值的tensor转换为可训练可修改的模型参数,即与model.parameters绑定在一起,register_parameter的意思是是否将这个参数放到model.parameters,None的意思是没有这个参数。 ?
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
B.multi_head_attention_forward
这个函数如下代码所示,主要分成3个部分:
- query, key, value通过_in_projection_packed变换得到q,k,v
- 遮挡机制
- 点积注意力
?
import torch
Tensor = torch.Tensor
def multi_head_attention_forward(
query: Tensor,
key: Tensor,
value: Tensor,
num_heads: int,
in_proj_weight: Tensor,
in_proj_bias: Optional[Tensor],
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_seperate_proj_weight = None,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
r'''
形状:
输入:
- query:`(L, N, E)`
- key: `(S, N, E)`
- value: `(S, N, E)`
- key_padding_mask: `(N, S)`
- attn_mask: `(L, S)` or `(N * num_heads, L, S)`
输出:
- attn_output:`(L, N, E)`
- attn_output_weights:`(N, L, S)`
'''
tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
head_dim = embed_dim // num_heads
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
if attn_mask is not None:
if attn_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
else:
assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
# reshape q,k,v将Batch放在第一维以适合点积注意力
# 同时为多头机制,将不同的头拼在一起组成一层
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
if attn_mask is None:
attn_mask = key_padding_mask
elif attn_mask.dtype == torch.bool:
attn_mask = attn_mask.logical_or(key_padding_mask)
else:
attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))
# 若attn_mask值是布尔值,则将mask转换为float
if attn_mask is not None and attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
# 若training为True时才应用dropout
if not training:
dropout_p = 0.0
attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
?
|