[源码解析] PyTorch 分布式(10)------DistributedDataParallel之Reducer静态架构
0x00 摘要
通过上文分析,我们已经知道了 DDP 的基本架构和如何初始化,本文就看看其核心 Reducer 的静态架构。Reducer 提供了反向传播中梯度同步的核心实现。
本系列文章如下:
[ 源码解析] PyTorch 分布式(1)------历史和概述
[ 源码解析] PyTorch 如何使用GPU
源码解析] PyTorch 分布式(2) ----- DataParallel(上)
[ 源码解析] PyTorch 分布式(3) ----- DataParallel(下)
[ 源码解析] PyTorch 分布式(4)------分布式应用基础概念
源码解析] PyTorch 分布式(5) ------ DistributedDataParallel 总述&如何使用
[ 源码解析] PyTorch分布式(6) —DistributedDataParallel – 初始化&store
[ 源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组
[源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇
[ 源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化
0x01 引论
1.1 调用
Reducer 的创建代码如下,是在_ddp_init_helper 之中。
self.reducer = dist.Reducer(
parameters,
list(reversed(bucket_indices)),
self.process_group,
expect_sparse_gradient,
self.bucket_bytes_cap,
self.find_unused_parameters,
self.gradient_as_bucket_view,
param_to_name_mapping,
)
调用的 parameters 举例如下, parameters[0] 就是 rank 0 上模型的 parameters,可以看到其只有 [0] 元素有意义,这个 [0] 原始本身包括 20 个元素:
parameters = {list: 1}
0 = {list: 4}
0 = {Parameter: 10} Parameter containing:\ntensor([[-4.0381e-02, 3.8828e-02, 1 )
1 = {Parameter: 10} Parameter containing:\ntensor([-0.0438, -0.2033, 0.2771, 0.0721, )
2 = {Parameter: 5} Parameter containing:\ntensor([[-0.0094, -0.1319, 0.0713, 0.3155, )
3 = {Parameter: 5} Parameter containing:\ntensor([-0.0008, 0.0582, -0.1245, -0.2538, )
...
20 = {Parameter: 5} Parameter containing:\ntensor([-0.0008, 0.0582, -0.1245, -0.2538, )
__len__ = {int} 20
__len__ = {int} 1
bucket_indices 举例如下:
关于 tensor indices,就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()。假如模型的 parameters 一共有20个张量,则 tensor index 从 0 到 19,分成 6 个buckets,则在这6个buckets之中,每个 tensor index 都是唯一不重复的。
+-----------------------------------------------------------------------+
| |
| <tensor index 0, tensor index 1, tensor index 2, tensor index 3> |
| |
| |
| <tensor index 4, tensor index 5, tensor 6> |
| |
| |
| ...... |
| |
| |
| <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
| |
+-----------------------------------------------------------------------+
python代码无意义,我们只能看看C++。
class Reducer(__pybind11_builtins.pybind11_object):
def __init__(self, replicas, *args, **kwargs):
""" __init__(self: torch._C._distributed_c10d.Reducer, replicas: List[List[at::Tensor]], bucket_indices: List[List[int]], process_group: c10d::ProcessGroup, expect_sparse_gradients: List[List[bool]] = [], bucket_bytes_cap: int = 26214400, find_unused_parameters: bool = False, gradient_as_bucket_view: bool = False, param_to_name_mapping: Dict[int, str] = {}) -> None """
pass
于是我们来到了 torch/lib/c10d/reducer.h 和 torch/lib/c10d/reducer.cpp。
0x02 Reducer 定义
Reducer 提供了反向传播中梯度同步的核心实现,其定义相当复杂,我们甚至需要去掉一些不重要的成员变量以便展示:
class Reducer {
public:
// The constructor takes a list of variables for every model replica.
// The bucket assignment for this reducer is specified as a list of
// buckets, each of which is specified as a list of indices into the
// variables list for **a single replica** (i.e. `variables[0]`).
explicit Reducer(
std::vector<std::vector<at::Tensor>> replicas,
std::vector<std::vector<size_t>> bucket_indices,
c10::intrusive_ptr<c10d::ProcessGroup> process_group,
std::vector<std::vector<bool>> expect_sparse_gradients,
int64_t bucket_bytes_cap,
bool find_unused_parameters,
bool gradient_as_bucket_view,
std::unordered_map<size_t, std::string>
paramNames);
protected:
// Forward declaration.
struct Bucket;
void push_rebuilt_params(const VariableIndex& index);
mutable std::mutex mutex_;
const std::vector<std::vector<at::Tensor>> replicas_;
const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_;
std::vector<std::vector<bool>> expect_sparse_gradients_;
std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
grad_accumulators_;
std::unordered_map<torch::autograd::Node*, VariableIndex>
gradAccToVariableMap_;
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_;
bool expect_autograd_hooks_;
bool require_finalize_;
size_t next_bucket_;
bool has_marked_unused_parameters_;
const bool find_unused_parameters_;
const bool gradient_as_bucket_view_;
std::vector<VariableIndex> unused_parameters_; // 如果没有用到,直接设置为就绪,第一次迭代之后久不会改变了
// Locally used parameter maps indicating if parameters are used locally
// during the current iteration or no_sync session if no_sync is on. One
// tensor for each model replica and each tensor is one-dim int32 tensor of
// number of parameters. These tensors are marked in autograd_hook to indicate
// the corresponding param has been used, and get allreduced in the end of
// backward of current iteration or no_sync session for figuring out the
// globally unused parameters.
//
// local_used_maps_: CPU tensors for bookkeeping locally used params
// local_used_maps_dev_: dev tensors for reducing globally unused params
std::vector<at::Tensor> local_used_maps_;
std::vector<at::Tensor> local_used_maps_dev_;
// Indicate that reduction is done and D2H copy is done as well.
bool local_used_maps_reduced_;
using GradCallback =
torch::distributed::autograd::DistAutogradContext::GradCallback;
// A bucket replica represents [1..N] gradients to be reduced,
// with the same dtype, on the same device.
//
// Batching gradients together before reducing them can result in lower
// overhead and/or faster time to completion. Only gradients of the same type
// and on the same device can be batched. The tensor that represents the
// flattened gradient uses the same type and is placed on the same device.
// Buckets are filled as the gradients they hold are computed (triggered by
// autograd hooks). Buckets are reduced in a predetermined order that is
// identical across processes.
struct BucketReplica {
// Flattened (1 dimensional) contents of bucket.
at::Tensor contents;
// Views into contents for each grad. Each view will be created with
// layout (sizes + strides) matching the grad's expected layout
// ("Gradient Layout Contract" in torch/csrc/autograd/AccumulateGrad.h).
// `bucket_views_in[i].copy_(grad)` and
// `grad.copy_(bucket_views_out[i])`
// provide convenient ways to move grad data in/out of contents.
// The reason we keep two states for bucket_views is that if DDP
// communication hook was registered, `bucket_views_out` could be
// re-initialized with the value of hook's `future_work`. We still need to
// keep a separate view reference to replica's original contents for
// `bucket_views_in[i].copy_(grad)` call.
std::vector<at::Tensor> bucket_views_in;
std::vector<at::Tensor> bucket_views_out;
// Variables that contribute to this bucket replica. Use refcounted value
// here so that we can easily unflatten the bucket contents into the
// participating variables after reduction has completed.
std::vector<at::Tensor> variables;
// Per-variable offset/length into the flat bucket contents tensor and grad
// bucket.
std::vector<size_t> offsets;
std::vector<size_t> lengths;
// Per-variable sizes into the grad bucekt.
std::vector<c10::IntArrayRef> sizes_vec;
// Number of tensors to be added before this bucket is complete.
// This is reset to `variables.size()` every iteration.
size_t pending;
// TODO(@pietern)
// Memory copies from gradient tensors into the bucket are potentially
// done on different CUDA streams. We record an event for every copy
// so that we can synchronize with them prior to kicking off the reduction.
// std::vector<at::cuda::CUDAEvent> events;
};
// A bucket holds N bucket replicas (1 per model replica).
//
// If every bucket in this struct is ready, the reduction can be kicked off.
// One bucket per replica. Reduction is kicked off when every bucket is ready.
//
struct Bucket {
std::vector<BucketReplica> replicas;
// Global indices of participating variables in the bucket
std::vector<size_t> variable_indices;
// Number of replicas to be marked done before this bucket is ready.
size_t pending;
// Keep work handle around when this set of buckets is being reduced.
c10::intrusive_ptr<c10d::ProcessGroup::Work> work;
// Keep future work handle around if DDP comm hook is registered.
c10::intrusive_ptr<torch::jit::Future> future_work;
// If this bucket should expect a single sparse gradient.
// Implies: replicas[i].variables.size() == 1.
bool expect_sparse_gradient = false;
};
std::vector<Bucket> buckets_;
// A variable locator locates a particular variable in the bucket
// structure. The `bucket_index` field points to the bucket in the `buckets_`
// vector. The `intra_bucket_index` field points to the index of the variable
// in any of the vector fields in the bucket replica.
struct VariableLocator {
// Index into the `buckets_` variable.
size_t bucket_index;
// Index of parameter in single bucket replica.
size_t intra_bucket_index;
VariableLocator() = default;
VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
bucket_index = bucket_index_;
intra_bucket_index = intra_bucket_index_;
}
};
// Map the index of a variable to its location in the bucket structure.
std::vector<VariableLocator> variable_locators_;
// track the number of iterations to synchronize grads in training so far.
long num_iterations_;
// track the number of buckets that have been ready for
// communication calls like allReduce or communication hooks.
int num_buckets_ready_;
// We collect the relative timestamp of every gradient being ready
// when executing autograd. This can be used to derive a timeline of
// the point in time buckets were ready, or ideal bucket assignment/ordering.
std::vector<std::vector<int64_t>> backward_stats_;
int ddp_runtime_logging_sample_rate_ = kDDPRuntimeLoggingSampleRate;
bool is_multi_device_module_ = false;
// Following variables are to help build dynamic bucket order
bool has_rebuilt_bucket_;
std::vector<at::Tensor> rebuilt_params_;
std::vector<int64_t> rebuilt_param_indices_;
const int64_t bucket_bytes_cap_;
struct RpcContext {
using ContextPtr = torch::distributed::autograd::ContextPtr;
// The shared_ptr is to hold the context instance.
ContextPtr context_ptr_holder;
std::atomic<ContextPtr::element_type*> context_ptr{nullptr};
void set(ContextPtr&& new_context_ptr);
};
RpcContext rpc_context_;
// A struct containing work handle and tensor for allreduce scheduled in
// forward pass, if applicable.
struct ForwardPassAllreduceWork {
c10::intrusive_ptr<c10d::ProcessGroup::Work> workHandle;
at::Tensor resultTensor;
// whether we should divide by the initial world_size or the no. of
// remaining DDP ranks.
bool useStaticWorldSize;
};
// Handle for the currently scheduled allreduce in the forward pass, if
// applicable.
ForwardPassAllreduceWork forwardPassWorkHandle_;
// Division factor for reduction of gradients.
int divFactor_;
bool static_graph_;
// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// should be triggered before marking this variable's grad as ready for communication.
// Map will not change after 1st iteration.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMap_;
// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// are left to be triggered before marking this variable's grad as ready for communication.
// Map will change after 1st iteration to track a grad is ready for communication or not.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMapPerIteration_;
private:
// comm_hook_ is used to access the DDP communication hook if registered.
std::unique_ptr<CommHookInterface> comm_hook_;
// Current thread local state
at::ThreadLocalState thread_local_state_;
// Debug level setting. It is parsed once when Reducer is constructed, and
// remains the same across a single invocation of DDP training.
DistributedDebugLevel ddp_debug_level_;
// Mapping of variable index to fully qualified name of model to notify users
// about errors when certain parameters do not get gradient.
std::unordered_map<size_t, std::string> param_names_;
// Per iteration set of parameter indices that have been marked ready.
std::unordered_set<size_t> perIterationReadyParams_;
// Retrieves parameter names that have not been marked as ready as part of
// previous iteration.
std::vector<std::string> getUnmarkedParamsForIteration();
// Retrives parameter indices that have not been marked as ready as part of
// previous iteration.
std::vector<size_t> getUnmarkedParamIndicesForIteration();
// Raises appropriate error if mark_variable_ready is called on the same
// variable twice, which is unexpected.
void checkAndRaiseMarkedTwiceError(size_t curVariableIndex);
friend class Logger;
};
Reducer 的关键成员变量如下。
std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
grad_accumulators_; // 对应的 index 存了相应的 grad_accumulator,就是 tensor index对应的grad_accumulator
std::unordered_map<torch::autograd::Node*, VariableIndex>
gradAccToVariableMap_; // 存了grad_accumulator & index 的对应关系,这样以后在 autograd graph 寻找 unused parameters 就方便了
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_;
std::vector<Bucket> buckets_;
const std::vector<std::vector<at::Tensor>> replicas_; // 传入的张量
const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_; // 进程组
我们接下来一一分析这些成员变量。
0x03 Bucket
3.1 设计
在规约梯度之前将梯度批处理在一起可以降低开销和/或加快完成时间。但是只能对同一设备上相同类型的梯度进行批处理。
桶是梯度的集合,统一设备上相同类型的梯度被放到同一个桶之中。在代码之中,Bucket 就是桶的概念。
在每次向后传播中,将所有参数梯度中的张量复制到桶中,并在AllReduce之后将平均梯度复制回桶中。为了加速复制操作,存储桶始终与参数在同一设备上创建。如果模型跨越多个设备,DDP会考虑设备关联性,以确保同一存储桶中的所有参数都位于同一设备上。AllReduce的顺序也会对结果产生影响,因为它决定了多少通信可以与计算重叠。DDP按model.parameters()的相反顺序启动AllReduce。
3.2 定义
3.2.1 BucketReplica有几个
为了更好的说明,我们首先要分析一下 BucketReplica 是什么。我们从注释出发看看。
首先,一个桶 Bucket 有多个BucketReplica,每一个模型对应一个BucketReplica。
但是只用了一个 [0] 元素,因为目前不支持单进程多设备模式,所以假定桶里只有一个replica。
GradBucket grad_bucket(
next_bucket_,
tensors[0],
bucket.replicas[0].offsets,
bucket.replicas[0].lengths,
bucket.replicas[0].sizes_vec);
bucket.future_work = comm_hook_->runHook(grad_bucket);
再结合前文代码,未来不会支持 SPMD。parameters 就是 [ToyModel] 这个模型列表的参数集合,parameters[0] 就是 ToyModel 的参数。
self._module_copies = [self.module]
parameters, expect_sparse_gradient = self._build_params_for_reducer()
综合以上我们知道:
- DDP 原来是希望像 DP 那样支持 SPMD,所以本进程就需要维护多个 GPU 之上的多个模型副本的参数,即,parameters 就是一个数组,数组中每个元素是一个模型副本的参数。
- parameters 被赋值为
Reducer.replicas_ ,而 Reducer.replicas_ 用来赋值给 bucket.replicas。 - 因为未来不支持Reducer.replicas_,所以只有 parameters[0] 有意义。
所以我们得出结论:
- BucketReplica 就是一个模型的待求梯度参数组。replica 对应一个 device (GPU)上的模型副本的参数信息(部分),即,一个 replica 代表了 [1…N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。
- 事实上,只有 bucket.replicas[0] 有意义,就对应了上面代码中的 [self.module] 之中的部分需求导张量,就是 parameters[0] 。
3.2.2 关键
我们再总结一下 Bucket 的关键:
-
replicas 成员变量就是 bucket 对应的各个BucketReplica。一个 BucketReplica 代表了 [1…N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。
- 只有 bucket.replicas[0] 有意义,就对应了本模型的待求梯度参数组之中本bucket对应的张量。
- 如何赋值?就是使用 Reducer.replicas_ 来赋值,而 replicas_ 就是参数 parameters。我们下面就会介绍。
-
variable_indices 成员变量用来记录本桶之中有哪些variable 的index。 如何赋值?使用前面介绍的 bucket_indices 进行赋值。 bucket.variable_indices = std::move(bucket_indices[bucket_index]);
如何使用?intra_bucket_index 是bucket.variable_indices的序号,利用序号得到真正的variable index。后文会依据代码再进行阐释。 size_t variable_index = bucket.variable_indices[intra_bucket_index];
3.2.3 具体定义
最后,Bucket 具体定义如下:
// A bucket holds N bucket replicas (1 per model replica).
//
// If every bucket in this struct is ready, the reduction can be kicked off.
// One bucket per replica. Reduction is kicked off when every bucket is ready.
//
struct Bucket {
std::vector<BucketReplica> replicas;// 每个模型副本对应一个桶
// Global indices of participating variables in the bucket
std::vector<size_t> variable_indices; // 具体每个桶里面有哪些 variable。
// Number of replicas to be marked done before this bucket is ready.
size_t pending; // 计数,
// Keep work handle around when this set of buckets is being reduced.
c10::intrusive_ptr<c10d::ProcessGroup::Work> work;
// Keep future work handle around if DDP comm hook is registered.
c10::intrusive_ptr<torch::jit::Future> future_work;
// If this bucket should expect a single sparse gradient.
// Implies: replicas[i].variables.size() == 1.
bool expect_sparse_gradient = false;
};
3.3 设置
Reducer 的成员变量buckets_ 是关键,这是Reducer 之中所有的桶。
std::vector<Bucket> buckets_;
在初始化函数中有如何初始化 buckets_,核心是:
- 找到本bucket在 bucket_indices 之中的 index。
- 在 parameters 之中找到 index 对应的张量。
- 在 BucketReplica 之中配置这些张量,就是本bucket应该规约的张量。
void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) {
buckets_.reserve(bucket_count);
for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
Bucket bucket;
if (bucket_indices[bucket_index].size() == 1) {
const auto variable_index = bucket_indices[bucket_index].front();
bucket.expect_sparse_gradient =
expect_sparse_gradients_[0][variable_index];
}
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
BucketReplica replica;
if (bucket.expect_sparse_gradient) {
const auto variable_index = bucket_indices[bucket_index].front();
const auto& variable = replicas_[replica_index][variable_index];
replica.variables = {variable};
} else {
for (const auto variable_index : bucket_indices[bucket_index]) {
const auto& variable = replicas_[replica_index][variable_index];
if (!options.has_device()) {
options = options.device(variable.device());
}
if (!options.has_dtype()) {
options = options.dtype(variable.dtype());
}
const auto length = variable.numel();
replica.variables.push_back(variable);
replica.offsets.push_back(offset);
replica.lengths.push_back(length);
replica.sizes_vec.push_back(variable.sizes());
offset += length;
}
initialize_bucket_views(replica, replica.contents);
}
bucket.replicas.push_back(std::move(replica));
}
bucket.variable_indices = std::move(bucket_indices[bucket_index]);
buckets_.push_back(std::move(bucket));
}
}
用图例表示如下,这里假设 bucket index 是 1,即第 2 个桶,所以 variable_indices 对应了 bucket_indices 中的相应部分。比如 BucketReplica[0] 里面是 Tensor 4,5,6,而variable_indices就是 Tensor 4,5,6 分别的 index。
下图中的 bucket_indices 是 Reducer 构造函数的参数之一。
+--------------------------------+ +------------------------------------+
|Reducer | | |
| | |bucket 0, bucket 1, ...... bucket n |
| vector<Bucket> buckets_ +---> | + |
| | | | |
+--------------------------------+ +------------------------------------+
|
+---------------+ +------------------------------+
| +--> | Tensor 4, Tensor 5, Tensor 6 |
| | +------------------------------+
| |
v +-----------------------------------------+
+-------------------------+-----------+ | | |
| Bucket | | +---+-----------+ +---------------+ |
| | | | BucketReplica | | BucketReplica | |
| | | | | ... | | |
| vector<BucketReplica> replicas +--------> | +---------------+ +---------------+ |
| | +-----------------------------------------+
| |
| vector<size_t> variable_indices +-------> <tensor index 4, tensor index 5, tensor 6>
| |
+-------------------------------------+
bucket_indices +-----------------------------------------------------------------------+
+ | |
| | <tensor index 0, tensor index 1, tensor index 2, tensor index 3> |
| | |
+----------> | |
| <tensor index 4, tensor index 5, tensor 6> |
| |
| |
| ...... |
| |
| |
| <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
| |
+-----------------------------------------------------------------------+
0x03 BucketReplica
如前面讨论的,一个 BucketReplica 代表了 [1…N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。是一个模型待求梯度参数的一部分,具体是哪些,由 bucket 的 variable_indices 决定。
其关键成员变量为:
std::vector<at::Tensor> variables 是构成此bucket副本的variable。我们在这里使用refcounted value,这样我们就可以在完成规约之后,轻松地将bucket内容 unflatten 到参与变量中。at::Tensor contents :把桶的内容展平的结果,即Flattened (1 dimensional) 之后的结果。std::vector<at::Tensor> bucket_views_in :提供了从输入角度在 contents 之中查看具体梯度的方法。std::vector<at::Tensor> bucket_views_out :提供了从输出角度在 contents 之中查看具体梯度的方法。
具体可以参见如下注释:
Views serve as entry points to copy_ each grad's data in/out of the flat contents tensor.
3.1 Views
关于 std::vector<at::Tensor> bucket_views_in 和 std::vector<at::Tensor> bucket_views_out 的进一步说明:
- 在 PyTorch 之中,视图是指创建一个方便查看的东西,视图与原数据共享内存,它只是将原有的数据进行整理,直接显示其中部分内容或者进行重排序后再显示出来。
- 每个 view 都将按照如下布局(sizes + strides)创建,这个布局与grad的预期布局相匹配。
- bucket_views_in 和 bucket_views_out 这两个变量提供在 contents 之中操作具体梯度的方法,或者说,它们提供了视图(views),该视图可以操作contents 之中每个张量的梯度。用户把这两个变量作为入口点来把每个梯度的数据从 content 之中移入和移出。
- 我们为
bucket_ 视图保留两种状态的原因是:如果注册了DDP通信钩子(communication hook), bucket_views_out 可以用钩子的 future_work 值重新初始化。所以我们需要为bucket_views_in[i].copy_(grad) 保留一个对 replica 原始 contents 的单独视图引用。 bucket_views_in[i].copy_(grad) 和 grad.copy_(bucket_views_out[i]) 提供了将梯度数据移入/移出contents的方便方法。
另外,以下三个成员变量存储桶的每个flat张量信息,比如offsets存储了各个张量在flat bucket contents中的offset。
std::vector<size_t> offsets;
std::vector<size_t> lengths;
std::vector<c10::IntArrayRef> sizes_vec;
3.2 定义
BucketReplica 具体定义为:
struct BucketReplica {
at::Tensor contents;
std::vector<at::Tensor> bucket_views_in;
std::vector<at::Tensor> bucket_views_out;
std::vector<at::Tensor> variables;
std::vector<size_t> offsets;
std::vector<size_t> lengths;
std::vector<c10::IntArrayRef> sizes_vec;
size_t pending;
};
目前为止,逻辑如下,如前所述,每个bucket只有 replicas[0] 有意义。
+-----------------------------------------------------+
+----------------------------+ | +-------+ +----------------------------------+ |
| Reducer | | |Bucket | |Bucket | |
| | | | | | | |
| | | | | | Future future_work | |
| vector<Bucket> buckets_ +------> | | | ... | | |
| | | | | | ProcessGroup::Work work | |
| | | | | | | |
| | | | | | vector<size_t> variable_indices | |
| | | | | | | |
| | | | | | vector<BucketReplica> replicas | |
| | | | | | + | |
| | | | | | | | |
| | | | | | | | |
+----------------------------+ | +-------+ +----------------------------------+ |
+-----------------------------------------------------+
|
|
v
+--------------------------------------------------------------+
| +---------------+ +----------------------------------+ |
| |BucketReplica | | BucketReplica | |
| | | | | |
| | | | | |
| | | | vector<Tensor> bucket_views_in | |
| | | ... | | |
| | | | vector<Tensor> bucket_views_out | |
| | | | | |
| | | | Tensor contents | |
| | | | | |
| | | | vector<Tensor> variables | |
| | | | | |
| | | | | |
| +---------------+ +----------------------------------+ |
+--------------------------------------------------------------+
3.3 初始化
部分初始化的代码在 Reducer::initialize_buckets 之中。
replica.contents = at::empty({static_cast<long>(offset)}, options);
initialize_bucket_views(replica, replica.contents);
initialize_bucket_views 具体代码如下,这里需要对几个 PyTorch 函数进行说明。
- as_strided :依据现有tensor以及给定的步长来创建一个视图(类型仍然为tensor),与原数据共享内存,不存储诗句,所以两个view都不是真实的存储,只是视图。
- narrow :返回一个新的张量,其是原来张量的缩小版。
initialize_bucket_views 主要逻辑是:
-
遍历replica的张量,针对每一个张量,依据其是dense还是sparse进行不同处理,最后插入到replica.bucket_views_in之中。 -
把 replica.bucket_views_out 设置为 replica.bucket_views_in,正常应该是相等的。 -
如果gradient_as_bucket_view_ 设置为true,则需要处理两种情况:
-
当调用 rebuild_buckets 重建 bucket时,initialize_bucket_view 可以在initialize_bucket内调用,如果grad在上一次迭代中已经定义/计算过,则需要将旧的grad复制到新的bucket_view中,并让grad指向新的bucket_view。 -
initialize_bucket_view 也可以在构建时候在 initialize_bucket 内调用。在构建时间内不会定义 Grad, 在这种情况下,不要让梯度指向bucket_view,因为对于全局未使用的参数,梯度应保持为未定义。
具体代码如下:
void Reducer::initialize_bucket_views(
Reducer::BucketReplica& replica,
at::Tensor& contents) {
for (size_t i = 0; i < replica.variables.size(); i++) {
auto& v = replica.variables[i];
const auto offset = replica.offsets[i];
const auto length = replica.lengths[i];
if (v.is_non_overlapping_and_dense()) {
replica.bucket_views_in.push_back(
contents.as_strided(v.sizes(), v.strides(), offset));
} else {
replica.bucket_views_in.push_back(
contents.narrow(0, offset, length).view(v.sizes()));
}
replica.bucket_views_out = replica.bucket_views_in;
if (gradient_as_bucket_view_) {
auto& bucket_view = replica.bucket_views_in.back();
runGradCallbackForVariable(v, [&](auto& grad) {
if (grad.defined() && !grad.is_alias_of(bucket_view)) {
bucket_view.copy_(grad);
grad = bucket_view;
return true;
}
return false;
});
}
}
}
具体如下图:
+------------------------------------------+
| BucketReplica |
| |
| vector<Tensor> bucket_views_in +--------------------+
| | |
| | |
| vector<Tensor> bucket_views_out +--------------+ |
| | | |
| | | |
| | v v
| | +-----+----+--------------------------+
| Tensor contents +---------------------> |Flattened (Tensor1, Tensor2, Tensor3)|
| | +-------------------------------------+
| |
| |
| vector<Tensor> variables +------------> [Tensor1,Tensor2,Tensor3]
| |
| |
| |
+------------------------------------------+
另外,mark_variable_ready_sparse, mark_variable_ready_dense, finalize_backward 都有对 contents 赋值。
0x04 查询类
以下两个类用来让 autograd hook 函数确定张量对应桶。
4.1 VariableIndex
VariableIndex 就是确定某个 tensor 在某个桶中的位置。这个对于 autograd hook 有用。对于autograd hook 回调,回调函数所在进程只是知道自己的梯度张量,但是回调函数需要知道这个张量位于哪个replica,以及位于replica之中哪个位置,这样才能进一步规约。
4.1.1 成员变量
Reducer 等类的实例之中,只有一个 VariableIndex 的成员变量,这个独立成员变量是:
std::vector<VariableIndex> unused_parameters_
VariableIndex 更多是作为其他成员变量的一部分或者参数存在,比如在 Reducer 之中,gradAccToVariableMap_ 就是使用了 VaribaleIndex。
std::unordered_map<torch::autograd::Node*, VariableIndex>
gradAccToVariableMap_;
4.1.2 定义
VariableIndex 定义如下:
struct VariableIndex {
size_t replica_index;
size_t variable_index;
VariableIndex() = default;
VariableIndex(size_t replica_index_, size_t variable_index_) {
replica_index = replica_index_;
variable_index = variable_index_;
}
static size_t hash(const VariableIndex& key) {
return c10::get_hash(key.replica_index, key.variable_index);
}
};
在 Reducer 的构造函数中,有如下代码用于autogrid_hook的设定,这是给每个 replica 上的每个张量设置了一个 hook。如果autograd hook 不知道此梯度对应哪个 bucket,就无法告诉 DDP,这个 bucket 整体ready了。
如何找到桶?需要使用下面的 VariableLocator。
auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index);
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& ) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index);
return outputs;
})),
grad_accumulator);
4.2 VariableLocator
4.2.1 定义
VariableLocator 用来在 bucket 之中确定一个varaible。为了找到一个张量位置,我们需要知道在哪个桶,在桶的张量之中的哪个位置。
- 哪个桶 :
bucket_index 是Reducer.buckets_ 列表的位置,表示 buckets_ 之上的一个bucket。 - 桶副本的哪个位置 :
intra_bucket_index 是在 bucket.replica 之中 vector 域的 variable index。
struct VariableLocator {
size_t bucket_index;
size_t intra_bucket_index;
VariableLocator() = default;
VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
bucket_index = bucket_index_;
intra_bucket_index = intra_bucket_index_;
}
};
4.2.2 成员变量
Reducer 的成员变量为:
std::vector<VariableLocator> variable_locators_;
4.2.2.1 初始化
如何初始化?
void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) {
buckets_.clear();
variable_locators_.clear();
variable_locators_.resize(replicas_[0].size());
const auto bucket_count = bucket_indices.size();
const auto replica_count = replicas_.size();
buckets_.reserve(bucket_count);
for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
size_t intra_bucket_index = 0;
for (const auto variable_index : bucket_indices[bucket_index]) {
variable_locators_[variable_index] =
VariableLocator(bucket_index, intra_bucket_index++);
}
}
}
问题:variable_locators_[variable_index] 在不同的桶之间,不会重复吗?不会,因为 VariableLocator(bucket_index, intra_bucket_index++) 从定义上看,bucket_index 和 intra_bucket_index 的组合是唯一的。
我们给出一个例子。关于 tensor indices,就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()。假如模型的 parameters 一共有12个张量,则 tensor index 从 0 到 11。假如分成 6 个buckets,则在这6个buckets之中,每个 tensor index 都是唯一不重复的。
+-----------------------------------------------------------------------+
| |
| <tensor index 0, tensor index 1, tensor index 2, tensor index 3> |
| |
| |
| <tensor index 4, tensor index 5, tensor 6> |
| |
| |
| ...... |
| |
| |
| <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
| |
+-----------------------------------------------------------------------+
这样,对应的 variable_locators_ 是:
variable_locators_[tensor index 0] = VariableLocator(bucket 0, 0),即 tensor index 0 属于 bucket 0 的 第一个variable。
variable_locators_[tensor index 1] = VariableLocator(bucket 0, 1),即 tensor index 1 属于 bucket 0 的 第二个variable。
variable_locators_[tensor index 2] = VariableLocator(bucket 0, 2),即 tensor index 2 属于 bucket 0 的 第三个variable。
variable_locators_[tensor index 3] = VariableLocator(bucket 0, 3),即 tensor index 3 属于 bucket 0 的 第四个variable。
4.2.2.2 使用
如何使用?我们用下面做为例子。
当 autograd hook 调用时候,使用 VariableIndex index 来回调,
this->autograd_hook(index)
autograd_hook 最终调用到 mark_variable_ready_dense,这里进而通过 variable_locators_ 来确定桶,然后进行后续操作。
void Reducer::mark_variable_ready_dense(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
auto& variable = replica.variables[bucket_index.intra_bucket_index];
const auto offset = replica.offsets[bucket_index.intra_bucket_index];
const auto length = replica.lengths[bucket_index.intra_bucket_index];
auto& bucket_view = replica.bucket_views_in[bucket_index.intra_bucket_index];
runGradCallbackForVariable(variable, [&](auto& grad) {
if (grad.defined()) {
this->check_grad_layout(grad, bucket_view);
if (!grad.is_alias_of(bucket_view)) {
this->copy_grad_to_bucket(grad, bucket_view);
if (gradient_as_bucket_view_) {
grad = bucket_view;
return true;
}
} else {
if (comm_hook_ == nullptr) {
bucket_view.div_(divFactor_);
}
}
} else {
bucket_view.zero_();
}
return false;
});
}
0x05 累积相关类
以下是梯度累积相关类。
5.1 grad_accumulators_
grad_accumulators_ 可以认为是一个矩阵,矩阵的每个item就是一个 AccumulateGrad(Node类型),就是用来计算梯度的。目前看来,这里只是一个bookkeeping作用。
std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
grad_accumulators_;
具体如下图,variable1 是一个实际的 张量,grad_accumulators_ 中的一个item 就指向 variable1 的 AccumulateGrad。
variable1 +----+
|
|
v
+-----------------------------------+ +-------------+-----------+
|grad_accumulators_ | | Variable |
| | | |
| | | +------------------+ |
| [replica_index][variable_index]+---------->+ AccumulateGrad | |
| | | | | |
| | | | | |
+-----------------------------------+ | | post_hooks_+--------> autograd_hook(index)
| | | |
| | | |
| +------------------+ |
| |
+-------------------------+
5.1.1 初始化
如何初始化?在 Reducer 构建函数之中有:
{
const auto replica_count = replicas_.size();
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
for (size_t variable_index = 0; variable_index < variable_count;
variable_index++) {
auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index);
auto grad_accumulator =
torch::autograd::impl::grad_accumulator(variable);
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& ) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index);
return outputs;
})),
grad_accumulator);
if (find_unused_parameters_) {
gradAccToVariableMap_[grad_accumulator.get()] = index;
}
numGradHooksTriggeredMap_[index] = 0;
grad_accumulators_[replica_index][variable_index] =
std::move(grad_accumulator);
}
}
}
5.1.2 使用
grad_accumulator 返回的是 Node,也就是 AccumulateGrad,是一个Node类型,我们取出了检查校验代码。
std::shared_ptr<Node> grad_accumulator(const Variable& self) {
auto autograd_meta = get_autograd_meta(self);
std::lock_guard<std::mutex> lock(autograd_meta->mutex_);
auto result = autograd_meta->grad_accumulator_.lock();
if (result)
return result;
c10::raw::intrusive_ptr::incref(self.unsafeGetTensorImpl());
auto intrusive_from_this = c10::intrusive_ptr<at::TensorImpl>::reclaim(self.unsafeGetTensorImpl());
result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this)));
autograd_meta->grad_accumulator_ = result;
return result;
}
5.2 gradAccToVariableMap_
gradAccToVariableMap_ 的定义如下:
std::unordered_map<torch::autograd::Node*, VariableIndex> gradAccToVariableMap_;
作用是给每个 Node 一个对应的VariableIndex,具体如图,下面就给 variable 1 一个 index 1:
+--------------+
| Variable |
+---> | |
| | |
| +--------------+
|
|
+-------------------------------------+ |
| gradAccToVariableMap_ | |
| | |
| | +
| <Node*, VariableIndex> +---------> [variable1 :index1, variable2 : index2]
| | +
| | |
| | |
+-------------------------------------+ |
|
v
+---------+-----------------------------+
|VariableIndex |
| |
| replica_index of Variable1 |
| |
| variable_index of Variable1 |
| |
+---------------------------------------+
5.2.1 初始化
如何初始化?在 Reducer 构造函数中有如下,就是给每个需要求导的 Varaible 一个VariableIndex。
auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index);
auto grad_accumulator = torch::autograd::impl::grad_accumulator(variable);
if (find_unused_parameters_) {
gradAccToVariableMap_[grad_accumulator.get()] = index;
}
5.2.2 使用
gradAccToVariableMap_ 的使用如下,search_unused_parameters 就是遍历查找 gradAccToVariableMap_ ,如果某一个accumulator 函数没有在 gradAccToVariableMap_ 里面,就说明不用计算梯度。
// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::search_unused_parameters(
const std::vector<torch::autograd::Variable>& outputs) {
std::unordered_set<torch::autograd::Node*> seen;
std::vector<torch::autograd::Node*> queue;
// Seed queue with the grad functions of all outputs.
for (const auto& output : outputs) {
const auto& grad_fn = output.grad_fn();
if (grad_fn) {
queue.push_back(grad_fn.get());
}
}
// Traverse the autograd graph starting at the specified output.
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) {
queue.push_back(next_ptr);
}
}
}
}
// 遍历查找,如果某一个accumulator 函数没有在这图里面,就说明不用计算梯度
// Find accumulator functions that don't show up in this graph.
for (const auto& it : gradAccToVariableMap_) {
// If the accumulator function is present in the graph, we know
// a gradient will be computed for the corresponding parameter.
if (seen.count(it.first) == 0) {
unused_parameters_.push_back(it.second);
}
}
}
5.3 numGradHooksTriggeredMap_
记录在本张量的梯度就绪之前,该张量的 autograd_hook 应该被调用几次。第一次迭代之后,不再增加,所以这个数值应该就是1或者0。用来设置 unused_parameters_ 和 配置 numGradHooksTriggeredMapPerIteration_。
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMap_;
5.3.1 初始化
如何初始化?在构建函数之中有:
numGradHooksTriggeredMap_[index] = 0;
第一次迭代之后,后续调用 autogrid_hook 就递增加一。
void Reducer::autograd_hook(VariableIndex index) {
if (static_graph_first_iteration()) {
numGradHooksTriggeredMap_[index] += 1;
return;
}
if (!has_marked_unused_parameters_) {
has_marked_unused_parameters_ = true;
for (const auto& unused_index : unused_parameters_) {
mark_variable_ready(unused_index);
}
}
if (static_graph_after_first_iteration()) {
if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
mark_variable_ready(index);
}
} else {
mark_variable_ready(index);
}
}
5.3.2 使用
如何使用?这里会reset。
void Reducer::reset_bucket_counting() {
next_bucket_ = 0;
num_buckets_ready_ = 0;
for (auto& bucket : buckets_) {
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size();
}
bucket.pending = bucket.replicas.size();
}
if (static_graph_) {
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
}
}
这里也会进行处理。如果为0,则插入unused_parameters_。
void Reducer::delay_all_reduce() {
for (size_t replica_index = 0; replica_index < replicas_.size();
replica_index++) {
for (size_t variable_index = 0; variable_index < replicas_[replica_index].size();
variable_index++) {
const auto index = VariableIndex(replica_index, variable_index);
if (numGradHooksTriggeredMap_[index] == 0) {
unused_parameters_.push_back(index);
}
require_finalize_ = true;
set_divide_factor();
if (expect_sparse_gradients_[replica_index][variable_index]) {
mark_variable_ready_sparse(index);
} else {
mark_variable_ready_dense(index);
}
}
}
for (auto & bucket : buckets_) {
all_reduce_bucket(bucket);
}
finalize_backward();
}
5.4 numGradHooksTriggeredMapPerIteration_
在本张量的梯度就绪之前,该张量的 autograd_hook 还需要被调用几次。如果为0,就说明这个桶应该整体就绪了。
本成员变量是使用 numGradHooksTriggeredMap_ 来重置。
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMapPerIteration_;
5.4.1 使用
如何使用?在静态图情况下,如果不是第一次迭代(此时刚刚产生梯度),就会把 numGradHooksTriggeredMapPerIteration_[index] 递减,如果为0,就说明该变量就绪,可以进行集合操作梯度规约了。
void Reducer::autograd_hook(VariableIndex index) {
if (static_graph_after_first_iteration()) {
if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
mark_variable_ready(index);
}
} else {
mark_variable_ready(index);
}
}
当新一次迭代时候,会重置这个值,prepare_for_backward 会调用到 reset_bucket_counting。
而且是使用 numGradHooksTriggeredMap_ 来重置。
void Reducer::reset_bucket_counting() {
next_bucket_ = 0;
num_buckets_ready_ = 0;
for (auto& bucket : buckets_) {
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size();
}
bucket.pending = bucket.replicas.size();
}
if (static_graph_) {
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
}
}
具体逻辑我们展示一下:
- 对于 张量 2,就没有使用过,所以 delay_all_reduce 方法 之中直接放入到未使用参数。
- 对于 张量 1:
- numGradHooksTriggeredMap_ 初始化是 0。
- 第一次迭代之后变成 1。
- 后向传播时候,调用 prepare_for_backward 和 reset_bucket_counting,把
numGradHooksTriggeredMap_ 赋值给 numGradHooksTriggeredMapPerIteration_ 。 - autograd_hook 之中会递减,然后如果是 0,就设置此变量为 ready,可以规约了。
Variable 2
delay_all_reduce
numGradHooksTriggeredMap_[2] = 0 +---------------> unused_parameters_.push_back(0)
+----------------------------------------------------------------------------------------+
Variable 1
numGradHooksTriggeredMap_[1] = 0
+
|
| first_iteration
|
v
numGradHooksTriggeredMap_[1] = 1
+
| prepare_for_backward
|
| reset_bucket_counting
v
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_
+
|
|
| backward
|
| autograd_hook
v
YES
if (++numGradHooksTriggeredMapPerIteration_[index]=== 0)?? +-------> mark_variable_ready(1)
+
| NO
|
v
5.5 perIterationReadyParams_
每个迭代之中,perIterationReadyParams_ 表示就绪的参数。
std::unordered_set<size_t> perIterationReadyParams_;
5.5.1 设置
就是如果某个variable是就绪状态,就插入到 perIterationReadyParams_。
void Reducer::mark_variable_ready(VariableIndex index) {
if (should_rebuild_buckets()) {
push_rebuilt_params(index);
}
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
if (replica_index == 0) {
checkAndRaiseMarkedTwiceError(variable_index);
perIterationReadyParams_.insert(variable_index);
}
}
5.5.2 重置
在反向传播之前,会重置这个变量。
void Reducer::prepare_for_backward(
const std::vector<torch::autograd::Variable>& outputs) {
perIterationReadyParams_.clear();
}
5.5.3 使用
就是遍历perIterationReadyParams_,如果没找到,就返回。
在 rebuild_buckets 方法中会调用 ensure_prior_reduction_finished,里面会调用这两个方法来校验。
std::vector<std::string> Reducer::getUnmarkedParamsForIteration() {
std::vector<std::string> unMarkedParamNames;
for (const auto& it : param_names_) {
if (perIterationReadyParams_.find(it.first) ==
perIterationReadyParams_.end()) {
unMarkedParamNames.push_back(it.second);
}
}
return unMarkedParamNames;
}
std::vector<size_t> Reducer::getUnmarkedParamIndicesForIteration() {
std::vector<size_t> unmarked_param_indices;
const auto variable_count = replicas_[0].size();
for (size_t variable_index = 0; variable_index < variable_count; variable_index++) {
if (perIterationReadyParams_.find(variable_index) == perIterationReadyParams_.end()) {
unmarked_param_indices.push_back(variable_index);
}
}
return unmarked_param_indices;
}
5.6 使用过的参数
以下两个变量用来记录本地使用过的参数,其标示在未启用同步的情况下(no_sync is on),在当前迭代或者 no_sync session 之中,这些参数是否在本地被使用过。
每个模型副本对应map中的一个张量,每个张量是参数数量的一维int32(one-dim int32)张量。
这些张量在autograd_hook中标记,以指示已使用了相应的参数。这些张量会在当前迭代或无同步会话(no_sync session)的后向传播结束时进行allreduce,以计算出全局未使用的参数。
std::vector<at::Tensor> local_used_maps_;
std::vector<at::Tensor> local_used_maps_dev_;
5.6.1 论文
此处可以结合论文看看。
全局未使用参数(Globally Unused Parameters)的梯度在向前和向后过程中应保持不变。检测未使用的参数需要全局信息,因为在一个DDP过程中,一个参数可能在一次操作中不存在,但可能在另一个过程的同一次迭代中参与训练。因此DDP在位图中维护本地未使用的参数信息,并启动额外的AllReduce以收集全局位图。由于位图比张量尺寸小得多,因此模型中的所有参数共享同一位图,而不是创建每桶位图(per-bucket bitmaps)。位图位于CPU上,以避免为每次更新启动专用CUDA内核。但是,某些ProcessGroup后端可能无法在CPU 张量上运行AllReduce。例如,ProcessGroupNCCL仅支持CUDA张量。此外,由于DDP应该与任何定制的ProcessGroup后端一起工作,它不能假设所有后端都支持CPU张量。为了解决这个问题,DDP在同一设备上维护另一个位图作为第一个模型参数,并调用非阻塞拷贝操作(non-blocking copy)将CPU位图移动到设备位图以进行集合通信。
5.6.2 初始化
初始化函数如下:
void Reducer::initialize_local_used_map() {
const auto replica_count = replicas_.size();
const auto variable_count = replicas_[0].size();
local_used_maps_.resize(replica_count);
local_used_maps_dev_.resize(replica_count);
for (size_t i = 0; i < replica_count; i++) {
at::TensorOptions options;
options = options.dtype(at::kInt);
local_used_maps_[i] =
at::zeros({static_cast<long>(variable_count)}, options);
options = options.device(replicas_[i][0].device());
local_used_maps_dev_[i] =
at::empty({static_cast<long>(variable_count)}, options);
}
}
5.6.3 重置
finalize_bucket_dense 和 finalize_backward 都会重置。
void Reducer::finalize_backward() {
if (dynamic_graph_find_unused()) {
for (auto& local_used : local_used_maps_) {
local_used.fill_(0);
}
local_used_maps_reduced_ = false;
}
5.6.4 设置
autograd_hook 之中如果使用了,就设置为1
void Reducer::autograd_hook(VariableIndex index) {
if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
local_used_maps_[index.replica_index][index.variable_index] = 1;
}
5.6.5 使用
在 mark_variable_ready 时候会调用到 all_reduce_local_used_map,如果需要同步,这里进行同步。我们还是翻译一下注释:
-
DDP 用异步H2D来避免阻塞开销。异步复制和allreduce 会着眼于当前流,因此将正确排序。 -
关于主机操作的正确顺序也很重要。H2D copy_ 是按流排序的,而主机对 local_used_maps_ 的更改是按主机排序的。 -
如果大量积压的cuda流工作将 copy_ 操作推迟到将来,并且如果从现在到finalize_backward 之间没有发生阻塞调用,那么finalize_backward 会在流执行复制之前将主机上使用的本地映射重新归零,在这种情况下,copy_会读取到这些零,而不是我们在这里告诉它读取的值。 -
将 local_used_maps_[i] 复制到pinned临时内存(固定的缓存分配器应该异步提供)可以避免这种恶劣的、罕见的争用情况。 -
在希望使用所有参数的情况下,从现在到重新调零,DDP本身不会做任何阻塞工作,因此这种危险情况是真实存在的。 -
所以,Reducer 采用防御性操作,以确保 local_used_maps_tmp 与local_used_maps_[i] 不同。
void Reducer::all_reduce_local_used_map() {
for (size_t i = 0; i < local_used_maps_.size(); i++) {
if (local_used_maps_dev_[i].is_cuda()) {
auto local_used_maps_tmp = at::native::empty_like(
local_used_maps_[i],
optTypeMetaToScalarType(local_used_maps_[i].options().dtype_opt()),
local_used_maps_[i].options().layout_opt(),
local_used_maps_[i].options().device_opt(),
true );
TORCH_INTERNAL_ASSERT(local_used_maps_tmp.is_pinned());
TORCH_INTERNAL_ASSERT(
local_used_maps_tmp.data_ptr() != local_used_maps_[i].data_ptr());
local_used_maps_tmp.copy_(local_used_maps_[i]);
local_used_maps_dev_[i].copy_(local_used_maps_tmp, true);
} else {
local_used_maps_dev_[i].copy_(local_used_maps_[i], true);
}
}
local_used_work_ = process_group_->allreduce(local_used_maps_dev_);
}
5.7 计算梯度支撑类
我们接下来分析一些计算梯度所涉及到的基本函数和支撑类。
5.7.1 RpcContext
该类用来封装 distributed::autograd::ContextPtr。
struct RpcContext {
using ContextPtr = torch::distributed::autograd::ContextPtr;
ContextPtr context_ptr_holder;
std::atomic<ContextPtr::element_type*> context_ptr{nullptr};
void set(ContextPtr&& new_context_ptr);
};
RpcContext rpc_context_;
5.7.2 hooks_
其作用就是保持了 autograd hook,也是起到了bookkeeping 作用。
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_;
初始化如下:
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& ) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index);
return outputs;
})),
grad_accumulator);
5.7.3 comm_hook_
5.7.3.1 概念
我们通过 [DDP Communication Hook] 来看看概念。
DDP通信钩子是一种增强功能,它提供了一个钩子,其可用于覆盖DDP来进行跨rank梯度通信,这可用于梯度压缩/GossipGrad等算法。可以使用Python API register_comm_hook 来注册钩子函数。
如果未注册DDP通信钩子(DDP communication hook),则reducer只需调用allreduce即可对桶进行规约。如果注册了,则会调用钩子并使用future work handle来处理。如果注册,reducer也会跳过"将梯度除以世界大小(world size)" 这个步骤。这样做的目的是:通信钩子可以完全覆盖我们执行通信的方式,用户可以完全控制如何处理梯度。
PythonCommHook 是CommHookInterface 的子类,其可以注册一个 Python 钩子。此外,还有一些内置的C++钩子实现,可以通过调用Python API register_builtin_comm_hook 来指定。
5.7.3.2 使用
我们通过 torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py 来看看。
下面的 hook 就是在 all-reduce 前后进行自己的特殊处理。如果使用这个 hook,就使用 ddp_model.register_comm_hook(process_group, fp16_compress_hook)。
def fp16_compress_hook(
process_group: dist.ProcessGroup, bucket: dist.GradBucket
) -> torch.futures.Future:
"""
This DDP communication hook implements a simple gradient compression
approach that casts ``GradBucket`` tensors to half-precision floating-point format (``torch.float16``)
and then divides it by the process group size.
It allreduces those ``float16`` gradient tensors. Once compressed gradient
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
Example::
>>> ddp_model.register_comm_hook(process_group, fp16_compress_hook)
"""
group_to_use = process_group if process_group is not None else dist.group.WORLD
world_size = group_to_use.size()
compressed_tensor = bucket.get_tensor().to(torch.float16).div_(world_size)
fut = dist.all_reduce(
compressed_tensor, group=group_to_use, async_op=True
).get_future()
def decompress(fut):
decompressed_tensor = bucket.get_tensor()
decompressed_tensor.copy_(fut.value()[0])
return [decompressed_tensor]
return fut.then(decompress)
5.7.4 runGradCallbackForVariable
mark_variable_ready_dense 函数会调用到 runGradCallbackForVariable。
5.7.4.1 Reducer
Reducer的runGradCallbackForVariable如下,其调用 distributed::autograd::ContextPtr.runGradCallbackForVariable 来处理。
void Reducer::runGradCallbackForVariable(
at::Tensor& variable,
GradCallback&& cb) {
auto context_ptr = rpc_context_.context_ptr.load();
if (context_ptr == nullptr) {
cb(variable.mutable_grad());
} else {
#ifndef _WIN32
context_ptr->runGradCallbackForVariable(variable, std::move(cb));
#endif
}
}
5.7.4.2 DistAutogradContext
我们顺着来到 DistAutogradContext。
它会在累积的梯度之中,在 accumulatedGrads_ 之中找到张量 对应的梯度 grad,然后用传入的回调函数来处理梯度grad,最后把处理后的梯度拷贝回accumulatedGrads_。这样就从 hook获取梯度 开始,到传回规约之后的梯度结束,完成了一个闭环。
void DistAutogradContext::runGradCallbackForVariable(
const torch::autograd::Variable& variable,
GradCallback&& cb) {
torch::Tensor grad;
{
std::lock_guard<std::mutex> guard(lock_);
auto it = accumulatedGrads_.find(variable);
TORCH_INTERNAL_ASSERT(
it != accumulatedGrads_.end(),
"The grad for the variable should exist in dist_autograd context.");
grad = it->value();
}
if (cb(grad)) {
std::lock_guard<std::mutex> guard(lock_);
auto device = grad.device();
accumulatedGrads_.insert_or_assign(variable, std::move(grad));
recordGradEvent(device);
}
}
DistAutogradContext 的 accumulatedGrads_会记录张量对应的当前梯度。
class TORCH_API DistAutogradContext {
public:
c10::Dict<torch::Tensor, torch::Tensor> accumulatedGrads_;
}
至此,我们初步介绍了一些基本类,下一章继续介绍(是在是太多了…)。
0xEE 个人信息
★★★★★★关于生活和技术的思考★★★★★★
微信公众账号:罗西的思考
如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,敬请关注。
0xFF 参考
pytorch分布式系列3——分布式训练时,torch.utils.data.distributed.DistributedSampler做了什么?
pytorch分布式系列1——搞清torch.distributed.launch相关的环境变量
pytorch分布式系列2——DistributedDataParallel是如何做同步的?
pytorch(分布式)数据并行个人实践总结——DataParallel/DistributedDataParallel
Pytorch的nn.DataParallel
https://discuss.pytorch.org/t/dataparallel-imbalanced-memory-usage/22551/20
https://pytorch.org/docs/stable/distributed.html
PyTorch 源码解读之分布式训练了解一下?
实操教程|PyTorch AutoGrad C++层实现
PYTORCH 自动微分(一)
PyTorch如何加速数据并行训练?分布式秘籍大揭秘
pytorch分布式训练(二init_process_group)
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/dist_tuto.html
PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析
Pytorch模型中的parameter与buffer
|