| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 训练一个专门捣乱的模型 -> 正文阅读 |
|
[人工智能]训练一个专门捣乱的模型 |
三位韩国人在EMNLP 2021 Findings上发表了一篇论文,名为Devil’s Advocate: Novel Boosting Ensemble Method from Psychological Findings for Text Classification,其中Devil’s Advocate有一部同名电影,翻译过来叫「魔鬼代言人」,他们主要挑战的是传统模型融合的方法,例如硬投票(Hard-Voting)、软投票(Soft Voting)、Bagging等。源码在HwiyeolJo/DevilsAdvocate 在群体决策过程中,大部分人会根据既定思维进行思考,而Devil’s Advocate是指那些提出的意见与大多数人不一致的那个人,Devil’s Advocate的存在可以激发群体的头脑风暴,打破固化思维。以上内容参考维基百科恶魔的代言人 Ensembles在具体讲解作者的方法前,先简单过一下常见的模型融合方法 Soft Voting软投票是对不同模型的预测分数进行加权平均,例如有一个三分类问题,第一个模型对某个样本的预测概率为[0.2,0.1,0.7];第二个模型对该样本的预测概率为[0.2,0.6,0.2];第三个模型对该样本的预测概率为[0.1,0.7,0.2],假设三个模型的投票权重均为
1
3
\frac{1}{3}
31?,则该样本最终的预测概率为 Hard Voting硬投票可以看作是软投票的一个变种,还是以上面三个模型预测的概率分布为例。第一个模型预测样本为第2类,第二、三个模型都认为样本是第2类,根据少数服从多数原则,该样本就被认为是第2类 BaggingBagging方法的核心思想是「民主」。首先从训练集中有放回地随机采样一些样本,采样n次,训练出n个弱模型,利用这n个模型采用投票的方式得到分类结果,如果是回归问题则是计算模型输出的均值作为最后的结果 BoostingBoosting的核心思想是「挑选精英」。Boosting与Bagging最本质的区别在于它对弱模型不是一致对待的,而是经过不停的考验和筛选来挑出「精英」,然后给精英更多的投票权,表现不好的模型则给较少的投票权 Proposed Method: Devil’s AdvocateTraining Norm and DevAdv models无论你是用什么方法做模型融合,至少都需要2个以上的模型。作者提出的方法至少需要3个模型,这些模型会被分成两个阵营:Normal models ( Norm n \text{Norm}_n Normn?, n ≥ 2 n\ge 2 n≥2)、Devil’s Advocate model (DevAdv) 首先我们使用传统的Cross Entropy Loss训练
Norm
n
\text{Norm}_n
Normn?模型
Group Discussion: Fine-tuning我看到这个标题的时候感觉很奇怪,这又不是预训练模型,怎么会有Fine-tuning阶段?仔细看了他们的代码之后才明白,他这个名字起的不好,不应该叫Fine-tuning,应该叫为Discussing或者Ensembles,即模型融合阶段。具体来说,之前我们已经把所有的模型都训练一遍了,接下来我们需要把DevAdv引入进来再训练一遍 Norm n \text{Norm}_n Normn?模型。特别地,当前阶段只会更新 Norm n \text{Norm}_n Normn?模型的参数,DevAdv模型的参数不会进行更新
对于
Norm
n
\text{Norm}_n
Normn?模型来说,此时的损失函数比较特殊
最后,对测试集进行测试时,采用软投票的机制组合
Norm
n
\text{Norm}_n
Normn?模型的结果。然后…然后就结束了吗?我们辛辛苦苦训练的DevAdv仅仅只是在「Discuss」阶段提供点噪声吗?来点作用啊DevAdv。仔细想一想,最开始在训练DevAdv模型的时候,我们评估它的指标是 Results这本质是一个模型融合的方法,理论上来说所有模型都是适用的。首先我们看一下消融研究 其中比较重要的去掉了DiscussLoss的部分,何谓DiscussLoss,其实就是 Norm n \text{Norm}_n Normn?模型相互讨论的阶段,即 MSE \text{MSE} MSE损失。去掉这部分后,除了Yelp数据集有些反常居然上升了,其他的都有不同程度的下降。同时作者证明他们的方法可以使用超过3个模型的情况,例如最后一行,他们使用了4个模型,其中有3个正常模型,一个DevAdv,效果虽然不如使用3个模型的情况(第一行),但是比常规的软投票还是要好一些,特别地,此时他们使用KL散度来替代MSE损失 接着作者分别采用TextCNN和基于Transformers的模型(论文里就没写到底用的是BERT还是RoBERTa等,如果直接用transformer不太可能,seq2seq的模型如何做分类?)做了一组实验 基本上作者所提出的方法都要比软投票好一些,不过我特别好奇的是硬投票,以及其他的一些模型融合方法为什么不对比下呢? 个人总结首先我要吐槽的是作者的美感,原论文中的数学公式写的非常丑,基本上感觉是直接用
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/27 4:14:07- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |