IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> CVPR-2018-DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking -> 正文阅读

[人工智能]CVPR-2018-DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking

CVPR-2018- DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking 阅读笔记

论文地址:
https://arxiv.org/abs/1809.02714

主要创新点:
加入Self-Attention模块(第一个具有自我注意模块的孪生网络跟踪算法)。

一、 动机

为了在保持泛化能力、高精度和速度的情况下,减少参数数量,并克服同一时间下只处理一个局部领域而造成的外观模型局限和对外观变化不鲁棒的问题。

二、 主要贡献

① 提出了一种新的端到端深度孪生网络结构用于目标跟踪。新的体系结构可以捕获对外观变化鲁棒的非本地特性。此外,与目前最先进的跟踪器中常用的其他基于孪生网络的现有架构相比,在构建更深层次的网络时,它减少了层之间共享参数的数量。
② 基于Self-Attention模块的有效响应图,提高DensSiam跟踪器的性能。响应映射具有非本地特性,并捕获关于目标对象的语义信息。
③ 提出的体系结构解决了渐变消失问题,利用了特征重用,提高了泛化能力。

三、 主要内容

该算法设计的核心思想是利用过渡层分隔的密集块建立孪生网络,采用自注意模型捕捉非局部特征。
网络架构:
在这里插入图片描述

目标分支结构:input-ConvNet-DenseBlock-TransitionLayer-DenseBlock-TransitionLayer-DenseBlock-DenseBlock-SelfAttention

Dense block:

Dense block包括批量归一化(bn) ,校正线性单位(relu) ,池化和卷积层,所有维度如下表1所示。Dense block中的每一层将前面所有的特征映射作为输入,并将它们连接起来。这些连接确保网络将保留所有前面的特征映射所需的信息,并改善层之间的信息流,从而提高如下图2所示的泛化能力。在传统的暹罗语中,第l层的输出被作为输入输入到第(l+1)层,我们将第l层的输出表示为 xl。为了描述Dense block中各层之间的信息流,假设输入张量为 x0∈R C× N × D,因此第l层的输出特征映射为:
在这里插入图片描述
Hl是BN、ReLU和3x3卷积三个连续操作,[ x0,x1,… ,xl-1]是一个特征映射连接。
加粗样式
在这里插入图片描述

Transition layer:

Transition layer包括卷积、池化和dropout操作。通过添加dropout到Dense block和Transition layer中去降低DensSiam对负样本过拟合的风险。由于Denssiam 是完全卷积的,不使用 padding 操作,所以Dense block中特征映射的大小是不同的,不能串联起来。因此,必须使用Transition layer来匹配Dense block的大小并正确地连接它们。

Self-Attention Model:

DensSiam 将Self-Attention 模块加入到目标分支,并以目标分支的输出特征图(x∈R C× N × D)作为输入。自我注意模型通过1x1卷积将特征图分成三个映射来获取注意,f (x)、 g (x) 和h(x)计算如下:
在这里插入图片描述
在这里插入图片描述
Wf,Wg,Wh是离线学习参数。
在这里插入图片描述
注意力特征 图权重参数通过以下计算得到:
在这里插入图片描述
在这里插入图片描述
φ是注意图的权重。
自我注意特征图计算如下:
在这里插入图片描述
其中 h (x) = Wh × x,Wh是离线学习参数。我们使用Dense block和自注意力模块的逻辑损失通过随机梯度下降(SGD)来计算单个损失如下:
在这里插入图片描述
其中 v 是候选目标对的单分值,y ∈[-1, 1]是它的ground truth label。为了计算特征映射的损失函数,我们使用整个映射的损失平均值:
在这里插入图片描述
最后,搜索分支与目标分支具有相同的体系结构,只是搜索分支没有自我注意模块。将自注意图的输出和搜索分支的输出反馈到相关层,学习相似度函数。

四、 实验结果

训练数据集:ILSVRC15
评测数据集:VOT2015 VOT2016 VOT2017
网络结构:input?ConvN et?DenseBlock1?TransitionLayer?DenseBlock2?TransitionLayer?DenseBlock3?DenseBlock4?Self Attention
testing speed:60 fps
The input target image size is 127 × 127 and the search image size is 255 × 255.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-25 08:07:06  更:2021-11-25 08:09:17 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 4:32:10-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码