ÎÒÃǽ«´ÓÁ㿪ʼʵÏÖÕû¸ö·½·¨,°üÀ¨Á÷Ë®Ïß¡¢Ä£ÐÍ¡¢Ëðʧº¯ÊýºÍСÅúÁ¿Ëæ»úÌݶÈϽµÓÅ»¯Æ÷¡£
import os
import matplotlib.pyplot as plt
#ÆäÖÐmatplotlib°ü¿ÉÓÃÓÚ×÷ͼ,ÇÒÉèÖóÉǶÈëʽ
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
ÎÒÃǹ¹Ôì?¸ö¼òµ¥µÄ??ѵÁ·Êý¾Ý¼¯,¸ø¶¨Ëæ»ú?³ÉµÄÅúÁ¿Ñù±¾ÌØÕ÷
,ÎÒÃÇʹ?ÏßÐԻعéÄ£ÐÍÕæʵȨÖØ
ºÍÆ«²îb=4.2,ÒÔ¼°?¸öËæ»úÔëÉù Ïî€ À´?³É±êÇ©:
?
?1¡¢Éú³ÉÊý¾Ý¼¯
"""
¸ù¾Ý´øÓÐÔëÉùµÄÏßÐÔÄ£Ð͹¹ÔìÒ»¸öÈËÔìÊý¾Ý¼¯
"""
num_inputs=2 #ÊäÈë¸öÊý(ÌØÕ÷Êý)Ϊ2
num_examples=1000 #ѵÁ·Êý¾Ý¼¯Ñù±¾ÊýΪ1000
true_w=[2,-3.4] #ÏßÐԻعéÄ£Ð͵ÄÕæʵȨÖØ
true_b=4.2 #ÏßÐԻعéÄ£Ð͵ÄÕæʵƫ²î
features=torch.from_numpy(np.random.normal(0,1,(num_examples,num_inputs)))
# ¾ùֵΪ0,·½²îΪ1µÄËæ»úÊý ,ÓÐnum_examples¸öÑù±¾,ÁÐÊýΪnum_inputs
labels=true_w[0]*features[:,0]+true_w[1]*features[:,1]+true_b
# lables¾ÍµÈÓÚwµÄÿÁгËÒÔfeaturesµÄÿÁÐÈ»ºóÏà¼Ó,×îºó¼ÓÉÏÆ«²îtrue_b;
labels+=torch.from_numpy(np.random.normal(0,0.01,size=labels.size()))
# ¼ÓÈëÁËÒ»¸öÔëÒô,¾ùֵΪ0,·½²îΪ0.01,ÐÎ×´ºÍlablesµÄ³¤¶ÈÊÇÒ»ÑùµÄ
"""
features µÄÿ??ÊÇ?¸ö?¶ÈΪ2µÄÏòÁ¿,? labels µÄÿ??ÊÇ?¸ö?¶ÈΪ1µÄÏòÁ¿(±ê
Á¿)
"""
print(features[0],labels[0])
#×îºóÊä³öÁÐÏòÁ¿(ÌØÕ÷ºÍ±ê×¢)
?
ͨ¹ý?³ÉµÚ?¸öÌØÕ÷ features[:, 1] ºÍ±êÇ© labels µÄÉ¢µãͼ,À´¹Û²ìÁ½Õß¼äµÄÏßÐÔ¹Ø
ϵ
def use_svg_display():
# ÓÃʸÁ¿Í¼±íʾ
display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5,2.5)):
use_svg_display()
#ÉèÖÃͼµÄ³ß´ç
plt.rcParams['figure.figsize']=figsize
set_figsize()
plt.scatter(features[:,1].numpy(),labels.numpy(),1);
plt.show()
?Ò²¿ÉÒÔ°ÑÉÏÊöµÄ×÷ͼº¯Êý±£´æÔÚd21zh_pytorch°üÖÐ,²½ÖèÈçÏÂ:
µÚÒ»²½:н¨Ò»¸öd21zh_pytorch°ü;
µÚ¶þ²½:ÔÚ°üÖÐн¨Ò»¸ömethods.py Îļþ;
µÚÈý²½:°Ñplt ×÷ ͼ º¯ Êý ÒÔ ¼° use_svg_display º¯ Êý ºÍ set_figsize º¯ Êý ¶¨ Òå ÔÚd2lzh_pytorch?ÖеÄmethods.pyÎļþÖÐ,Èçͼ:
?È»ºó¿ÉÒÔÖ±½Óµ÷Óñ£´æºÃµÄº¯Êý,À´ÏÔʾɢµãͼ:
"""
Èç¹ûÔÚd21zh_pytorchÀïÃæÌí¼ÓÉÏÃæÁ½¸öº¯Êýºó,¾Í¿ÉÒÔʹÓÃÏÂÃæµÄ·½·¨µ÷Óü´¿É
"""
import sys
sys.path.append("..")
from d21zh_pytorch import *
set_figsize()
plt.scatter(features[:,1].numpy(),labels.numpy(),1);
plt.show()
2¡¢ ¶ÁÈ¡Êý¾Ý
ÔÚѵÁ·Êý¾Ýʱ,ÎÒÃÇÐèÒª±éÀúÊý¾Ý¼¯²¢²»¶Ï¶ÁȡСÅúÁ¿Êý¾ÝÑù±¾¡£ÔÚÕâÀïÎÒÃǶ¨ÒåÒ»¸öº¯Êý:Ëûÿ´Î·µ»Øbatch_size(ÅúÁ¿´óС)¸öËæ»úÑù±¾µÄÌØÕ÷ºÍ±êÇ©¡£
#¶¨ÒåÒ»¸ödata_iterº¯Êý,¸Ãº¯Êý½ÓÊÜÅúÁ¿´óС¡¢ÌØÕ÷¾ØÕóºÍ±êÇ©ÏòÁ¿×÷ΪÊäÈë,Éú³É´óСΪbatch_sizeµÄСÅúÁ¿
def data_iter(batch_size,features,labels):
num_examples=len(features)
indices=list (range(num_examples))
random.shuffle(indices) #Ñù±¾µÄ¶Áȡ˳ÐòÊÇËæ»úµÄ
for i in range(0,num_examples,batch_size):
#´Ó0¿ªÊ¼µ½num_examples½áÊø,ÿ´ÎÌøbatch_size¸ö´óС¡£
j=torch.LongTensor(indices[i:min(i+batch_size,num_examples)])
#×îºóÒ»´Î¿ÉÄܲ»×ãÒ»¸öbatch,ËùÒÔ×îºóÒ»¸öÅúÁ¿È¡Ò»¸ö×îСֵmin
yield features.index_select(0,j),labels.index_select(0,j)
#¶ÁÈ¡µÚÒ»¸öСÅúÁ¿Êý¾ÝÑù±¾²¢´òÓ¡
batch_size=10
for X,y in data_iter(batch_size,features,labels):
print(X,'\n',y) #Éú³ÉXÊÇ10³Ë2µÄÏòÁ¿,yÊÇ10³Ë1µÄÏòÁ¿
#¼Ó¸ö¡®\n¡¯ ¿ÉÒÔÈÃy»»Ðбíʾ
break
3¡¢?¶¨Òå³õʼ»¯Ä£ÐͲÎÊý
"""
ÎÒÃǽ«È¨Öسõʼ»¯³É¾ùֵΪ0,±ê×¼²îΪ0.01µÄÕý̬Ëæ»úÊý,Æ«²î³õʼ»¯³É0
"""
tensor = tensor.to(torch.float32)
w=torch.tensor(np.random.normal(0,0.01,(num_inputs,1)),dtype=torch.double)
b=torch.zeros(1,dtype=torch.double)
#Ö®ºóµÄÄ£ÐÍѵÁ·ÖÐ,ÐèÒª¶ÔÕâЩ²ÎÊýÇóÌݶÈÀ´µü´ú²ÎÊýµÄÖµ,Òò´ËÎÒÃÇÒªÈÃËüÃǵÄrequires_grad=True
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
×¢:w=torch.tensor(np.random.normal(0,0.01,(num_inputs,1)),dtype=torch.double)
b=torch.zeros(1,dtype=torch.double)
ÕâÀïÊý¾ÝÀàÐÍÒªÓÃdouble,¶ø²»ÄÜÓÃfloat32,·ñÔò»á±¨´í¡£
4¡¢¶¨ÒåÄ£ÐÍ
#ÏÂÃæÊÇÏßÐԻعéµÄʸÁ¿¼ÆËã±í´ïʽµÄʵÏÖ,ÎÒÃÇʹÓÃmmº¯Êý×ö¾ØÕó³Ë·¨
def linreg(X,w,b):#ÏßÐԻعéÄ£ÐÍ
return torch.mm(X,w)+b
#·µ»ØÔ¤²â(ÊäÈëX³ËÒÔw,¾ØÕó³ËÒÔÏòÁ¿,¼ÓÉÏÆ«²î)
5¡¢¶¨ÒåËðʧº¯Êý
"""
ÃèÊöµÄƽ·½ËðʧÀ´¶¨ÒåÏßÐԻعéµÄËðʧº¯Êý,ÔÚÏÖʵÖÐ,ÎÒÃÇÐèÒª°ÑÕæʵֵy±ä³ÉÔ¤²âÖµy_hatµÄÐÎ×´¡£ÒÔϺ¯Êý·µ»ØµÄ½á¹ûÒ²½«ºÍy_hatµÄÐÎ×´Ïàͬ
"""
def squared_loss(y_hat,y):
#squared_loss¾ù·½Ëðʧ
return (y_hat - y.view(y_hat.size()))**2/2#°´ÔªËØ×ö¼õ·¨,°´ÔªËØ×öƽ·½,×îºó³ýÒÔ2
# ×¢ÒâÕâ?·µ»ØµÄÊÇÏòÁ¿, ÁíÍâ, pytorch?µÄMSELoss²¢Ã»ÓгýÒÔ2
6¡¢¶¨ÒåÓÅ»¯Ëã·¨
# ÒÔÏ嵀 sgd º¯ÊýʵÏÖÁËÉÏ?½ÚÖнéÉܵÄ?ÅúÁ¿Ëæ»úÌݶÈϽµËã·¨¡£Ëüͨ¹ý²»¶Ïµü´úÄ£ÐͲÎÊýÀ´ÓÅ»¯Ëðʧº¯Êý¡£Õâ??¶¯ÇóÌݶÈÄ£¿é¼ÆËãµÃÀ´µÄÌݶÈÊÇ?¸öÅúÁ¿Ñù±¾µÄÌݶȺ͡£ÎÒÃǽ«Ëü³ýÒÔÅúÁ¿??À´µÃµ½Æ½¾ùÖµ¡£
def sgd(params, lr, batch_size): #¸ø¶¨ËùÓеIJÎÊýparam(°üº¬ÁËwºÍb),ѧϰÂÊ,ÅúÁ¿´óС
#СÅúÁ¿Ëæ»úÌݶÈϽµ
for param in params: #¶Ô²ÎÊýparamsÖеÄÿһ¸ö²ÎÊýparam(w»òÕßb)
param.data -= lr * param.grad / batch_size # ÌݶȴæÔÚ.gradÖÐ
## ×¢ÒâÕâ?¸ü¸Äparamʱ?µÄparam.data
7¡¢ÑµÁ·Ä£ÐÍ
lr = 0.03 #ѧϰÂÊÉèÖÃΪ0.03
num_epochs = 3 #µü´úÖÜÆÚ¸öÊýΪ3,Õû¸öÊý¾ÝɨÈý±é
net = linreg #ÏßÐԻعéÄ£ÐÍ
loss = squared_loss #¾ù·½Ëðʧ
#ѵÁ·µÄʵÏÖ¾ÍÊÇÁ½²ãfor epoch
for epoch in range(num_epochs): # ѵÁ·Ä£ÐÍ?¹²ÐèÒªnum_epochs¸öµü´úÖÜÆÚ
# ÔÚÿ?¸öµü´úÖÜÆÚÖÐ,»áʹ?ѵÁ·Êý¾Ý¼¯ÖÐËùÓÐÑù±¾?´Î(¼ÙÉèÑù±¾ÊýÄܹ»±»ÅúÁ¿??Õû³ý)
# XºÍy·Ö±ðÊÇ?ÅúÁ¿Ñù±¾µÄÌØÕ÷ºÍ±êÇ©
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y).sum()
# lÊÇÓйØ?ÅúÁ¿XºÍyµÄËðʧ
l.backward() # ?ÅúÁ¿µÄËðʧ¶ÔÄ£ÐͲÎÊýÇóÌݶÈ
sgd([w, b], lr, batch_size) # ʹ??ÅúÁ¿Ëæ»úÌݶÈϽµµü´úÄ£ÐͲÎÊý
# ²»ÒªÍüÁËÌݶÈÇåÁã
w.grad.data.zero_()
b.grad.data.zero_()
train_l = loss(net(features, w, b), labels)
print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
Êä³öºÜ¶àÌõÊý¾Ý´Óepoch1µ½epoch3¡£
#±È½ÏÕæʵ²ÎÊýºÍͨ¹ýѵÁ·Ñ§µ½µÄ²ÎÊýÀ´ÆÀ¹ÀѵÁ·µÄ³É¹¦³Ì¶È
print(true_w, '\n', w)
print(true_b, '\n', b)
?
?
|