VGGNet
VGG的实质:AlexNet增强版 VGG网络用了更小的3x3的卷积核,两个连续的3x3的卷积核相当于5x5的感受野。 三个3x3的连续的卷积核也就相当于7x7的感受野。
VGG池化层特征池化核2x2;AlexNet网络中池化核3x3;
从而层数变多,训练参数减少。 层数多,提取特征效果好,但是计算量就大了。
特点:
小尺寸卷积核 减少参数 提升准确率
16层网络 f分别是
CBA CBAPT 35 CBA CBAPT 35 CBA CBA CBAPT 335 CBA CBA CBAPT 335 flatten 拉直层 全连接(512个神经元)全连接(512个神经元)全连接(10个神经元) 111
卷积核个数变化 64-128-256-512 核数量 逐渐增加 越靠后,图像特征越少,增加卷积核的个数—》增加特征图的深度 保持信息承载能力。
VGG16 网络模型 的 代码 导包
import os
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import matplotlib.pyplot as plt
设置屏蔽不喜欢的提示
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
小tips: log信息共有四个等级,按重要性递增为: INFO(通知)<WARNING(警告)<ERROR(错误)<FATAL(致命的)
base_log | 屏蔽信息 | 输出信息 |
---|
“0” INFO | 无 | INFO + WARNING + ERROR + FATAL | “1” | WARNING | INFO WARNING + ERROR + FATAL | “2” | ERROR | INFO + WARNING ERROR + FATAL | “3” | FATAL | INFO + WARNING + ERROR FATAL |
加载数据
(x_train, y_train), (x_test, y_test) = datasets.cifar100.load_data()
tf.random.set_seed(2345)
class VGG16(Model):
def __init__(self):
super(VGG16, self).__init__()
self.c1 = Conv2D(filters=64, kernel_size=(3, 3), padding='same')
self.b1 = BatchNormalization()
self.a1 = Activation('relu')
self.c2 = Conv2D(filters=64, kernel_size=(3, 3), padding='same', )
self.b2 = BatchNormalization()
self.a2 = Activation('relu')
self.p1 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d1 = Dropout(0.2)
self.c3 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')
self.b3 = BatchNormalization()
self.a3 = Activation('relu')
self.c4 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')
self.b4 = BatchNormalization()
self.a4 = Activation('relu')
self.p2 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d2 = Dropout(0.2)
self.c5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')
self.b5 = BatchNormalization()
self.a5 = Activation('relu')
self.c6 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')
self.b6 = BatchNormalization()
self.a6 = Activation('relu')
self.c7 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')
self.b7 = BatchNormalization()
self.a7 = Activation('relu')
self.p3 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d3 = Dropout(0.2)
self.c8 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b8 = BatchNormalization()
self.a8 = Activation('relu')
self.c9 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b9 = BatchNormalization()
self.a9 = Activation('relu')
self.c10 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b10 = BatchNormalization()
self.a10 = Activation('relu')
self.p4 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d4 = Dropout(0.2)
self.c11 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b11 = BatchNormalization()
self.a11 = Activation('relu')
self.c12 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b12 = BatchNormalization()
self.a12 = Activation('relu')
self.c13 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b13 = BatchNormalization()
self.a13 = Activation('relu')
self.p5 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d5 = Dropout(0.2)
self.flatten = Flatten()
self.f1 = Dense(512, activation='relu')
self.d6 = Dropout(0.2)
self.f2 = Dense(512, activation='relu')
self.d7 = Dropout(0.2)
self.f3 = Dense(10, activation='softmax')
def call(self, x):
x = self.c1(x)
x = self.b1(x)
x = self.a1(x)
x = self.c2(x)
x = self.b2(x)
x = self.a2(x)
x = self.p1(x)
x = self.d1(x)
x = self.c3(x)
x = self.b3(x)
x = self.a3(x)
x = self.c4(x)
x = self.b4(x)
x = self.a4(x)
x = self.p2(x)
x = self.d2(x)
x = self.c5(x)
x = self.b5(x)
x = self.a5(x)
x = self.c6(x)
x = self.b6(x)
x = self.a6(x)
x = self.c7(x)
x = self.b7(x)
x = self.a7(x)
x = self.p3(x)
x = self.d3(x)
x = self.c8(x)
x = self.b8(x)
x = self.a8(x)
x = self.c9(x)
x = self.b9(x)
x = self.a9(x)
x = self.c10(x)
x = self.b10(x)
x = self.a10(x)
x = self.p4(x)
x = self.d4(x)
x = self.c11(x)
x = self.b11(x)
x = self.a11(x)
x = self.c12(x)
x = self.b12(x)
x = self.a12(x)
x = self.c13(x)
x = self.b13(x)
x = self.a13(x)
x = self.p5(x)
x = self.d5(x)
x = self.flatten(x)
x = self.f1(x)
x = self.d6(x)
x = self.f2(x)
x = self.d7(x)
y = self.f3(x)
return y
|