IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PaddleOCR 文字检测部分源码学习(5)-模型(3) -> 正文阅读

[人工智能]PaddleOCR 文字检测部分源码学习(5)-模型(3)

2021SC@SDUSC
骨干网络
代码位置:ppocr->modeling->backbones->det_resnet_vd.py
网络退化问题:网络深度增加时,网络准确度出现饱和,甚至出现下降。
ResNet网络是参考了VGG19网络,在其基础上进行了修改,并通过短路机制加入了残差单元,如下图所示。变化主要体现在ResNet直接使用stride=2的卷积做下采样,并且用global average pool层替换了全连接层。ResNet的一个重要设计原则是:当feature map大小降低一半时,feature map的数量增加一倍,这保持了网络层的复杂度。从图5中可以看到,ResNet相比普通网络每两层间增加了短路机制,这就形成了残差学习,其中虚线表示feature map数量发生了改变。图5展示的34-layer的ResNet,还可以构建更深的网络如表1所示。从表中可以看到,对于18-layer和34-layer的ResNet,其进行的两层间的残差学习,当网络更深时,其进行的是三层间的残差学习,三层卷积核分别是1x1,3x3和1x1,一个值得注意的是隐含层的feature map数量是比较小的,并且是输出feature map数量的1/4。
在这里插入图片描述

class ResNet(nn.Layer):
    def __init__(self, in_channels=3, layers=50, **kwargs):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=32,
            kernel_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)

        self.stages = []
        self.out_channels = []
        if layers >= 50:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    block_list.append(bottleneck_block)
                self.out_channels.append(num_filters[block] * 4)
                self.stages.append(nn.Sequential(*block_list))
        else:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    block_list.append(basic_block)
                self.out_channels.append(num_filters[block])
                self.stages.append(nn.Sequential(*block_list))

ResNet是一种残差网络,咱们可以把它理解为一个子网络,这个子网络经过堆叠可以构成一个很深的网络。
在这里插入图片描述
在这里插入图片描述
上表是Resnet不同的结构,上表一共提出了5中深度的ResNet,分别是18,34,50,101和152,首先看表的最左侧,我们发现所有的网络都分成5部分,分别是:conv1,conv2_x,conv3_x,conv4_x,conv5_x,之后的其他论文也会专门用这个称呼指代ResNet50或者101的每部分。 例如:101-layer那列,101-layer指的是101层网络,首先有个输入7x7x64的卷积,然后经过3 + 4 + 23 + 3 = 33个building block,每个block为3层,所以有33 x 3 = 99层,最后有个fc层(用于分类),所以1 + 99 + 1 = 101层,确实有101层网络; 注:101层网络仅仅指卷积或者全连接层,而激活层或者Pooling层并没有计算在内;我们关注50-layer和101-layer这两列,可以发现,它们唯一的不同在于conv4_x,ResNet50有6个block,而ResNet101有23个block,两者之间差了17个block,也就是17 x 3 = 51层。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-29 16:19:21  更:2021-11-29 16:21:51 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 3:53:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码