IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 视觉SLAM十四讲CH10代码解析及课后习题详解 -> 正文阅读

[人工智能]视觉SLAM十四讲CH10代码解析及课后习题详解

g2o_viewer问题解决

在进行位姿图优化时候,如果出现g2o_viewer: command not found,说明你的g2o_viewer并没有安装上,打开你之前安装的g2o文件夹,打开bin文件夹,如果没有找到g2o_viewer,说明没有安装上(下图是已经安装好的)。 如果还没有安装g2o的,请参照我之前写的博客:

Ubuntu18.04安装Ceres和g2o库_nudt一枚研究生-CSDN博客一、ceres安装:1.Ctrl+Alt+T打开终端:安装依赖:sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3 libgflags-dev libgoogle-glog-dev libgtest-dev2. 下载源码:https://github.com/ceres-solver/ceres-solverGitHub - ceres-solver/ceres-solver: A large shttps://blog.csdn.net/weixin_53660567/article/details/120295320Ubuntu20.04安装Ceres和g2o库_nudt一枚研究生-CSDN博客x-special/nautilus-clipboardcutfile:///home/liqiang/Desktop/DeepinScreenshot_Navigator_20210914203012.png一、ceres安装:1.Ctrl+Alt+T打开终端:安装依赖:sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3 libgflags-dev libgoogle-glog-dev libgthttps://blog.csdn.net/weixin_53660567/article/details/120295824

g2o_viewer安装:

安装依赖(可以在g2o/build下面打开终端安装依赖):

sudo apt-get install libeigen3-dev
sudo apt-get install libsuitesparse-dev
sudo apt-get install qtdeclarative5-dev
sudo apt-get install qt5-qmake
sudo apt-get install libqglviewer-dev

进入到g2o/build下面,打开终端:

cmake ..
make -j4
sudo make install

然后在g2o/bin文件夹下面会有可执行文件 g2o_viewer,输入g2o_viewer,就可以打开g2o Viewer。

如果出现:

g2o_viewer: error while loading shared libraries: libg2o_viewer.so: cannot open shared object file: No such file or directory

出现这个错误时,进入到g2o/build下面,输入:

sudo ldconfig

然后使用Ctrl+Alt+T打开终端,输入:

g2o_viewer

sphere.g2o:

VERTEX_SE3:QUAT 0 -0.125664 -1.53894e-17 99.9999 0.706662 4.32706e-17 0.707551 -4.3325e-17

节点类型是VERTEX_SE3,表达一个相机位姿。g2o默认使用四元数和平移向量表达位姿。上面的数字从左到右依次是: , , , , , , 。前三个为平移向量元素,后四个为表示旋转的单位四元数。

EDGE_SE3:QUAT 0 1 -0.0187953 0.0328449 -0.125146 0.0634648 -0.000250128 0.00237634 0.997981 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000

EDGE_SE3表示边的信息,边的信息为两个节点的ID,? , , , , , , ?以及信息矩阵的右上角,在本例中,信息矩阵的大小为6x6,且被设成了对角阵。

查看sphere.g2o文件:

方法1:

点击File->load,打开sphere.g2o文件

方法2:

在ch10文件夹下打开终端,执行下面的命令

g2o_viewer sphere.g2o

点击Optimize:

优化结果:

loaded sphere.g2o with 2500 vertices and 9799 measurements
graph is fixed by node 2499
# Using CHOLMOD poseDim -1 landMarkDim -1 blockordering 1
Preparing (no marginalization of Landmarks)
iteration= 0	 chi2= 2080902190.865136	 time= 0.116081	 cumTime= 0.116081	 edges= 9799	 schur= 0
iteration= 1	 chi2= 18794278.949871	 time= 0.451063	 cumTime= 0.567144	 edges= 9799	 schur= 0
iteration= 2	 chi2= 59504.776209	 time= 1.0643	 cumTime= 1.63145	 edges= 9799	 schur= 0
iteration= 3	 chi2= 44360.707890	 time= 0.457449	 cumTime= 2.0889	 edges= 9799	 schur= 0
iteration= 4	 chi2= 44360.644572	 time= 0.747359	 cumTime= 2.83626	 edges= 9799	 schur= 0
iteration= 5	 chi2= 44360.644572	 time= 1.23642	 cumTime= 4.07268	 edges= 9799	 schur= 0
iteration= 6	 chi2= 44360.644572	 time= 0.0884912	 cumTime= 4.16117	 edges= 9799	 schur= 0
iteration= 7	 chi2= 44360.644572	 time= 0.281899	 cumTime= 4.44307	 edges= 9799	 schur= 0
iteration= 8	 chi2= 44360.644572	 time= 0.871107	 cumTime= 5.31417	 edges= 9799	 schur= 0
iteration= 9	 chi2= 44360.644572	 time= 1.15844	 cumTime= 6.47261	 edges= 9799	 schur= 0

pose_graph_g2o_SE3.cpp

#include <iostream>
#include <fstream>//文件读取头文件
#include <string>

#include <g2o/types/slam3d/types_slam3d.h>// g2o/types/slam3d/中的SE3表示位姿
#include <g2o/core/block_solver.h>//求解器
#include <g2o/core/optimization_algorithm_levenberg.h>//列文伯格——马尔夸特算法头文件
#include <g2o/solvers/eigen/linear_solver_eigen.h>

using namespace std;

/************************************************
 * 本程序演示如何用g2o solver进行位姿图优化
 * sphere.g2o是人工生成的一个Pose graph,我们来优化它。
 * 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
 * 这里使用g2o/types/slam3d/中的SE3表示位姿,它实质上是四元数而非李代数.
 * **********************************************/

int main(int argc, char **argv) 
{
    //读取sphere.g2o文件
    if (argc != 2) {
        cout << "Usage: pose_graph_g2o_SE3 sphere.g2o" << endl;//输出用法
        return 1;
    }
    ifstream fin(argv[1]);
    if (!fin) {
        cout << "file " << argv[1] << " does not exist." << endl;
        return 1;
    }

    // 构建图优化,先设定g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType; //每个误差项优化变量维度为6,误差值维度为6
    typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;//线性求解器类型
    // 梯度下降方法,可以从GN, LM, DogLeg 中选
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    //c++中的make_unique表示智能指针类型
    g2o::SparseOptimizer optimizer;     // 图模型
    optimizer.setAlgorithm(solver);   // 设置求解器
    optimizer.setVerbose(true);       // 打开调试输出

    int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量
    while (!fin.eof()) {
        string name;
        fin >> name;
        if (name == "VERTEX_SE3:QUAT")//当数据是节点类型VERTEX_SE3:QUAT时
        {
            // SE3 顶点
            g2o::VertexSE3 *v = new g2o::VertexSE3();//指针v
            int index = 0;
            fin >> index;
            v->setId(index);//对边进行编号
            v->read(fin);
            optimizer.addVertex(v);
            vertexCnt++;//遍历所有节点
            if (index == 0)
                v->setFixed(true);
        } else if (name == "EDGE_SE3:QUAT") //当数据是边的信息EDGE_SE3:QUAT时
        {
            // SE3-SE3 边
            g2o::EdgeSE3 *e = new g2o::EdgeSE3();//指针e
            int idx1, idx2;     // 关联的两个顶点
            fin >> idx1 >> idx2;
            e->setId(edgeCnt++);//遍历所有边
            e->setVertex(0, optimizer.vertices()[idx1]);
            e->setVertex(1, optimizer.vertices()[idx2]);
            e->read(fin);
            optimizer.addEdge(e);
        }
        if (!fin.good()) break;
    }

    cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;//输出共有多少个顶点和边

    cout << "optimizing ..." << endl;//输出optimizing ...优化后
    optimizer.initializeOptimization();//优化过程初始化
    optimizer.optimize(30);//设置优化的迭代次数为30次

    cout << "saving optimization results ..." << endl;//输出储存结果
    optimizer.save("result.g2o");//在build文件夹下存储为result.g2o文件

    return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(pose_graph)

set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)

# Eigen
include_directories("/usr/include/eigen3")

# sophus 
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})

# g2o 
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})

add_executable(pose_graph_g2o_SE3 pose_graph_g2o_SE3.cpp)
target_link_libraries(pose_graph_g2o_SE3
        g2o_core g2o_stuff g2o_types_slam3d ${CHOLMOD_LIBRARIES}
        )

add_executable(pose_graph_g2o_lie pose_graph_g2o_lie_algebra.cpp)
target_link_libraries(pose_graph_g2o_lie
        g2o_core g2o_stuff
        ${CHOLMOD_LIBRARIES}
        ${Sophus_LIBRARIES}
        )

执行结果:

./pose_graph_g2o_SE3 ../sphere.g2o 
read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0	 chi2= 1023011093.967642	 time= 0.412224	 cumTime= 0.412224	 edges= 9799	 schur= 0	 lambda= 805.622433	 levenbergIter= 1
iteration= 1	 chi2= 385118688.233188	 time= 0.396826	 cumTime= 0.809049	 edges= 9799	 schur= 0	 lambda= 537.081622	 levenbergIter= 1
iteration= 2	 chi2= 166223726.693658	 time= 0.395324	 cumTime= 1.20437	 edges= 9799	 schur= 0	 lambda= 358.054415	 levenbergIter= 1
iteration= 3	 chi2= 86610874.269316	 time= 0.40099	 cumTime= 1.60536	 edges= 9799	 schur= 0	 lambda= 238.702943	 levenbergIter= 1
iteration= 4	 chi2= 40582782.710189	 time= 0.404917	 cumTime= 2.01028	 edges= 9799	 schur= 0	 lambda= 159.135295	 levenbergIter= 1
iteration= 5	 chi2= 15055383.753040	 time= 0.407228	 cumTime= 2.41751	 edges= 9799	 schur= 0	 lambda= 101.425210	 levenbergIter= 1
iteration= 6	 chi2= 6715193.487654	 time= 0.414222	 cumTime= 2.83173	 edges= 9799	 schur= 0	 lambda= 37.664667	 levenbergIter= 1
iteration= 7	 chi2= 2171949.168383	 time= 0.402862	 cumTime= 3.23459	 edges= 9799	 schur= 0	 lambda= 12.554889	 levenbergIter= 1
iteration= 8	 chi2= 740566.827049	 time= 0.403515	 cumTime= 3.63811	 edges= 9799	 schur= 0	 lambda= 4.184963	 levenbergIter= 1
iteration= 9	 chi2= 313641.802464	 time= 0.406507	 cumTime= 4.04461	 edges= 9799	 schur= 0	 lambda= 2.583432	 levenbergIter= 1
iteration= 10	 chi2= 82659.743578	 time= 0.397021	 cumTime= 4.44164	 edges= 9799	 schur= 0	 lambda= 0.861144	 levenbergIter= 1
iteration= 11	 chi2= 58220.369189	 time= 0.427051	 cumTime= 4.86869	 edges= 9799	 schur= 0	 lambda= 0.287048	 levenbergIter= 1
iteration= 12	 chi2= 52214.188561	 time= 0.410727	 cumTime= 5.27941	 edges= 9799	 schur= 0	 lambda= 0.095683	 levenbergIter= 1
iteration= 13	 chi2= 50948.580336	 time= 0.407471	 cumTime= 5.68689	 edges= 9799	 schur= 0	 lambda= 0.031894	 levenbergIter= 1
iteration= 14	 chi2= 50587.776729	 time= 0.396986	 cumTime= 6.08387	 edges= 9799	 schur= 0	 lambda= 0.016436	 levenbergIter= 1
iteration= 15	 chi2= 50233.038802	 time= 0.394694	 cumTime= 6.47856	 edges= 9799	 schur= 0	 lambda= 0.010957	 levenbergIter= 1
iteration= 16	 chi2= 49995.082836	 time= 0.395463	 cumTime= 6.87403	 edges= 9799	 schur= 0	 lambda= 0.007305	 levenbergIter= 1
iteration= 17	 chi2= 48876.738968	 time= 0.784587	 cumTime= 7.65861	 edges= 9799	 schur= 0	 lambda= 0.009298	 levenbergIter= 2
iteration= 18	 chi2= 48806.625520	 time= 0.394058	 cumTime= 8.05267	 edges= 9799	 schur= 0	 lambda= 0.006199	 levenbergIter= 1
iteration= 19	 chi2= 47790.891374	 time= 0.780777	 cumTime= 8.83345	 edges= 9799	 schur= 0	 lambda= 0.008265	 levenbergIter= 2
iteration= 20	 chi2= 47713.626578	 time= 0.39445	 cumTime= 9.2279	 edges= 9799	 schur= 0	 lambda= 0.005510	 levenbergIter= 1
iteration= 21	 chi2= 46869.323691	 time= 0.780449	 cumTime= 10.0083	 edges= 9799	 schur= 0	 lambda= 0.007347	 levenbergIter= 2
iteration= 22	 chi2= 46802.585509	 time= 0.397007	 cumTime= 10.4054	 edges= 9799	 schur= 0	 lambda= 0.004898	 levenbergIter= 1
iteration= 23	 chi2= 46128.758046	 time= 0.7841	 cumTime= 11.1895	 edges= 9799	 schur= 0	 lambda= 0.006489	 levenbergIter= 2
iteration= 24	 chi2= 46069.133544	 time= 0.395788	 cumTime= 11.5852	 edges= 9799	 schur= 0	 lambda= 0.004326	 levenbergIter= 1
iteration= 25	 chi2= 45553.862168	 time= 0.781823	 cumTime= 12.3671	 edges= 9799	 schur= 0	 lambda= 0.005595	 levenbergIter= 2
iteration= 26	 chi2= 45511.762622	 time= 0.395914	 cumTime= 12.763	 edges= 9799	 schur= 0	 lambda= 0.003730	 levenbergIter= 1
iteration= 27	 chi2= 45122.763002	 time= 0.780705	 cumTime= 13.5437	 edges= 9799	 schur= 0	 lambda= 0.004690	 levenbergIter= 2
iteration= 28	 chi2= 45095.174401	 time= 0.39546	 cumTime= 13.9391	 edges= 9799	 schur= 0	 lambda= 0.003127	 levenbergIter= 1
iteration= 29	 chi2= 44811.248507	 time= 0.781468	 cumTime= 14.7206	 edges= 9799	 schur= 0	 lambda= 0.003785	 levenbergIter= 2
saving optimization results ...

?sphere.g2o:

VERTEX_SE3:QUAT 0 -0.125664 -1.53894e-17 99.9999 0.706662 4.32706e-17 0.707551 -4.3325e-17 
VERTEX_SE3:QUAT 1 -0.250786 -0.0328449 99.981 0.705413 0.0432253 0.705946 -0.0465295 
VERTEX_SE3:QUAT 2 -0.384479 -0.102155 99.9722 0.701473 0.0869233 0.701311 -0.0924285 
VERTEX_SE3:QUAT 3 -0.488061 -0.195958 99.9833 0.689802 0.131752 0.698923 -0.135355 
VERTEX_SE3:QUAT 4 -0.577441 -0.319656 99.9749 0.683889 0.173189 0.684097 -0.185235 
VERTEX_SE3:QUAT 5 -0.626233 -0.455465 99.9639 0.675686 0.20944 0.672757 -0.216751 
VERTEX_SE3:QUAT 6 -0.653603 -0.602648 99.9579 0.658288 0.246239 0.662316 -0.259541 
VERTEX_SE3:QUAT 7 -0.660457 -0.786874 99.9504 0.637158 0.294767 0.642758 -0.306601 
VERTEX_SE3:QUAT 8 -0.618421 -0.981472 99.946 0.627982 0.330033 0.615145 -0.343967 
...........
EDGE_SE3:QUAT 0 1 -0.0187953 0.0328449 -0.125146 0.0634648 -0.000250128 0.00237634 0.997981 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 1 2 -0.00836587 0.0518559 -0.141405 0.0636098 -0.000538 0.00162238 0.997973 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 2 3 0.0116518 0.0646362 -0.123843 0.0628369 0.0060981 -0.00213561 0.998003 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 3 4 -0.00635662 0.0817346 -0.128989 0.0661221 -0.0051306 0.00750755 0.99777 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 4 5 -0.00900338 0.0946003 -0.109164 0.0498363 -0.00340117 -0.00255259 0.998748 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 5 6 -0.00495715 0.104779 -0.106982 0.0596275 0.00563598 0.00254199 0.998202 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 6 7 -0.00385872 0.132603 -0.128231 0.0734198 0.000112718 -0.000902908 0.997301 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 7 8 -0.000783881 0.156605 -0.122999 0.0574284 -0.0114936 0.00730844 0.998257 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 8 9 -0.00262376 0.131903 -0.124046 0.0674511 0.00698356 0.00882454 0.997659 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 9 10 0.00417907 0.167845 -0.123652 0.0678472 0.00148376 0.0030903 0.99769 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 

result.g2o:

VERTEX_SE3:QUAT 0 -0.125664 -1.53894e-17 99.9999 0.706662 4.32706e-17 0.707551 -4.3325e-17 
FIX 0
VERTEX_SE3:QUAT 1 -0.2447 -0.0287003 99.9832 0.704617 0.0231823 0.70586 -0.0688426 
VERTEX_SE3:QUAT 2 -0.370162 -0.0884744 99.9776 0.697957 0.0591073 0.703232 -0.121767 
VERTEX_SE3:QUAT 3 -0.478226 -0.175864 99.9885 0.68874 0.100025 0.698127 -0.16808 
VERTEX_SE3:QUAT 4 -0.56488 -0.291548 99.975 0.676789 0.139138 0.689709 -0.216564 
VERTEX_SE3:QUAT 5 -0.624303 -0.425521 99.9516 0.661416 0.182572 0.679895 -0.258725 
VERTEX_SE3:QUAT 6 -0.660524 -0.576074 99.933 0.644081 0.223744 0.666222 -0.30207 
VERTEX_SE3:QUAT 7 -0.659218 -0.741865 99.9144 0.622089 0.265154 0.652111 -0.34271 
VERTEX_SE3:QUAT 8 -0.615012 -0.927527 99.8896 0.601222 0.303189 0.633667 -0.380887 
.................
EDGE_SE3:QUAT 0 1 -0.0187953 0.0328449 -0.125146 0.0634648 -0.000250128 0.00237634 0.997981 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 1 2 -0.00836587 0.0518559 -0.141405 0.0636098 -0.000538 0.00162238 0.997973 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 2 3 0.0116518 0.0646362 -0.123843 0.0628369 0.0060981 -0.00213561 0.998003 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 3 4 -0.00635662 0.0817346 -0.128989 0.0661221 -0.0051306 0.00750755 0.99777 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 4 5 -0.00900338 0.0946003 -0.109164 0.0498363 -0.00340117 -0.00255259 0.998748 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 5 6 -0.00495715 0.104779 -0.106982 0.0596275 0.00563598 0.00254199 0.998202 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 6 7 -0.00385872 0.132603 -0.128231 0.0734198 0.000112718 -0.000902908 0.997301 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 7 8 -0.000783881 0.156605 -0.122999 0.0574284 -0.0114936 0.00730844 0.998257 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 8 9 -0.00262376 0.131903 -0.124046 0.0674511 0.00698356 0.00882454 0.997659 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 
EDGE_SE3:QUAT 9 10 0.00417907 0.167845 -0.123652 0.0678472 0.00148376 0.0030903 0.99769 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 40000 0 0 40000 0 40000 

?result.g2o查看:

在ch10/build下面:

 g2o_viewer result.g2o 

和上面点击Optimize进行优化后的结果没有什么区别。

pose_graph_g2o_lie_algebra.cpp

#include <iostream>
#include <fstream>//文件读取头文件
#include <string>
#include <Eigen/Core>//Eigen核心模块

#include <g2o/core/base_vertex.h>//g2o顶点(Vertex)头文件 视觉slam十四讲p141用顶点表示优化变量,用边表示误差项
#include <g2o/core/base_binary_edge.h>//g2o边(edge)头文件
#include <g2o/core/block_solver.h>//求解器头文件
#include <g2o/core/optimization_algorithm_levenberg.h>//列文伯格——马尔夸特算法头文件
#include <g2o/solvers/eigen/linear_solver_eigen.h>

#include <sophus/se3.hpp>

using namespace std;
using namespace Eigen;
using Sophus::SE3d;//在SE3d子类中引用基类Sophus的成员
using Sophus::SO3d;//在SO3d子类中引用基类Sophus的成员


/************************************************
 * 本程序演示如何用g2o solver进行位姿图优化
 * sphere.g2o是人工生成的一个Pose graph,我们来优化它。
 * 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
 * 本节使用李代数表达位姿图,节点和边的方式为自定义
 * **********************************************/

typedef Matrix<double, 6, 6> Matrix6d;

// 给定误差求J_R^{-1}的近似
Matrix6d JRInv(const SE3d &e) {
    Matrix6d J;//雅可比矩阵
    //视觉SLAM十四讲p272式(10.11)
    //              | φe(^)   ρe(^) |   | E   0 |        | φe(^)   ρe(^) |
    //Jr(-1)≈I+(1/2)|               | = |       | + (1/2)|               |
    //              |   0     φe(^) |   | 0   E |        |   0     φe(^) |
    J.block(0, 0, 3, 3) = SO3d::hat(e.so3().log());//E+(1/2)φe(^)
    J.block(0, 3, 3, 3) = SO3d::hat(e.translation());//(1/2)ρe(^)
    J.block(3, 0, 3, 3) = Matrix3d::Zero(3, 3);//0
    J.block(3, 3, 3, 3) = SO3d::hat(e.so3().log());//E+(1/2)φe(^)
    // J = J * 0.5 + Matrix6d::Identity();
    J = Matrix6d::Identity();    // try Identity if you want  用单位阵来近似雅可比矩阵
    return J;
}

// 李代数顶点
typedef Matrix<double, 6, 1> Vector6d;

class VertexSE3LieAlgebra : public g2o::BaseVertex<6, SE3d> //public表示公有继承;VertexSE3LieAlgebra是派生类,BaseVertex<3, Eigen::Vector3d>是基类
{
public://以下定义的成员变量和成员函数都是公有的
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW//解决Eigen库数据结构内存对齐问题

    virtual bool read(istream &is) override  //istream类是c++标准输入流的一个基类
    //可参照C++ Primer Plus第六版的6.8节
      {
        double data[7];//定义数组
        for (int i = 0; i < 7; i++)
            is >> data[i];
        setEstimate(SE3d(
            Quaterniond(data[6], data[3], data[4], data[5]),
            Vector3d(data[0], data[1], data[2])
        ));//Quaterniond表示四元数qw qx qy qz Vector3d表示平移向量元素tx ty tz
        //return true;
    }

    virtual bool write(ostream &os) const override //ostream类是c++标准输出流的一个基类
    //可参照C++ Primer Plus第六版的6.8节
    {
        os << id() << " ";
        Quaterniond q = _estimate.unit_quaternion();
        os << _estimate.translation().transpose() << " ";
        os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << endl;
        return true;
    }

    virtual void setToOriginImpl() override //virtual表示该函数为虚函数,override保留字表示当前函数重写了基类的虚函数
    {
        _estimate = SE3d();
    }

    // 左乘更新
    virtual void oplusImpl(const double *update) override 
    {
        Vector6d upd;
        upd << update[0], update[1], update[2], update[3], update[4], update[5];
        _estimate = SE3d::exp(upd) * _estimate;
    }
};

// 两个李代数节点之边
class EdgeSE3LieAlgebra : public g2o::BaseBinaryEdge<6, SE3d, VertexSE3LieAlgebra, VertexSE3LieAlgebra> {
public://以下定义的成员变量和成员函数都是公有的
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW//解决Eigen库数据结构内存对齐问题

    virtual bool read(istream &is) override  //istream类是c++标准输入流的一个基类
    //可参照C++ Primer Plus第六版的6.8节
    {
        double data[7];
        for (int i = 0; i < 7; i++)
            is >> data[i];
        Quaterniond q(data[6], data[3], data[4], data[5]);//四元数
        q.normalize();//归一化
        setMeasurement(SE3d(q, Vector3d(data[0], data[1], data[2])));
        for (int i = 0; i < information().rows() && is.good(); i++)
            for (int j = i; j < information().cols() && is.good(); j++) {
                is >> information()(i, j);
                if (i != j)
                    information()(j, i) = information()(i, j);
            }
        return true;
    }

    virtual bool write(ostream &os) const override 
    {
        VertexSE3LieAlgebra *v1 = static_cast<VertexSE3LieAlgebra *> (_vertices[0]);//定义指针v1
        VertexSE3LieAlgebra *v2 = static_cast<VertexSE3LieAlgebra *> (_vertices[1]);//定义指针v2
        os << v1->id() << " " << v2->id() << " ";
        SE3d m = _measurement;
        Eigen::Quaterniond q = m.unit_quaternion();
        os << m.translation().transpose() << " ";
        os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";//输出四元数

        // information matrix 信息矩阵
        for (int i = 0; i < information().rows(); i++)
            for (int j = i; j < information().cols(); j++) {
                os << information()(i, j) << " ";
            }
        os << endl;
        return true;
    }

    // 误差计算与书中推导一致
    virtual void computeError() override {
        SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
        SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
        //视觉SLAM十四讲p271式(10.4)
        //eij(^)=Δξij*In(Tij(-1)Ti(-1)Tj)^
        _error = (_measurement.inverse() * v1.inverse() * v2).log();
        //_measurement.inverse() -> Tij(-1)
        //v1.inverse() -> Ti(-1)
        //Tj -> v2
        //.log()表示In()
    }

    // 雅可比计算
    virtual void linearizeOplus() override {
        SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
        SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
        Matrix6d J = JRInv(SE3d::exp(_error));//使用TRInv()函数提供近似的Jr(-1)
        // 尝试把J近似为I?
        _jacobianOplusXi = -J * v2.inverse().Adj();//视觉SLAM十四讲式(10.9)
        _jacobianOplusXj = J * v2.inverse().Adj();//视觉SLAM十四讲式(10.10)
    }
};

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "Usage: pose_graph_g2o_SE3_lie sphere.g2o" << endl;//输出使用方法
        return 1;
    }
    ifstream fin(argv[1]);
    if (!fin) {
        cout << "file " << argv[1] << " does not exist." << endl;
        return 1;
    }

    // 设定g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;//每个误差项优化变量维度为6,误差值维度为6
    typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;//线性求解器类型
    // 梯度下降方法,可以从GN, LM, DogLeg 中选
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;     // 图模型
    optimizer.setAlgorithm(solver);   // 设置求解器
    optimizer.setVerbose(true);       // 打开调试输出

    int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量

    vector<VertexSE3LieAlgebra *> vectices;
    vector<EdgeSE3LieAlgebra *> edges;
    while (!fin.eof()) {
        string name;
        fin >> name;
        if (name == "VERTEX_SE3:QUAT") //当数据是节点类型VERTEX_SE3:QUAT时
        {
            // 顶点
            VertexSE3LieAlgebra *v = new VertexSE3LieAlgebra();//指针v
            int index = 0;
            fin >> index;
            v->setId(index);//对边进行编号
            v->read(fin);
            optimizer.addVertex(v);
            vertexCnt++;//遍历所有节点
            vectices.push_back(v);
            if (index == 0)
                v->setFixed(true);
        } else if (name == "EDGE_SE3:QUAT") {
            // SE3-SE3 边
            EdgeSE3LieAlgebra *e = new EdgeSE3LieAlgebra();//指针e
            int idx1, idx2;     // 关联的两个顶点
            fin >> idx1 >> idx2;
            e->setId(edgeCnt++);//遍历所有边
            e->setVertex(0, optimizer.vertices()[idx1]);
            e->setVertex(1, optimizer.vertices()[idx2]);
            e->read(fin);
            optimizer.addEdge(e);
            edges.push_back(e);
        }
        if (!fin.good()) break;
    }

    cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;//输出共有多少个顶点和边

    cout << "optimizing ..." << endl;//输出optimizing ...优化后
    optimizer.initializeOptimization();//优化过程初始化
    optimizer.optimize(30);//设置优化的迭代次数为30次


    cout << "saving optimization results ..." << endl;

    // 因为用了自定义顶点且没有向g2o注册,这里保存自己来实现
    // 伪装成 SE3 顶点和边,让 g2o_viewer 可以认出
    ofstream fout("result_lie.g2o");
    for (VertexSE3LieAlgebra *v:vectices) {
        fout << "VERTEX_SE3:QUAT ";
        v->write(fout);
    }
    for (EdgeSE3LieAlgebra *e:edges) {
        fout << "EDGE_SE3:QUAT ";
        e->write(fout);
    }
    fout.close();
    return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(pose_graph)

set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)

# Eigen
include_directories("/usr/include/eigen3")

# sophus 
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})

# g2o 
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})

add_executable(pose_graph_g2o_SE3 pose_graph_g2o_SE3.cpp)
target_link_libraries(pose_graph_g2o_SE3
        g2o_core g2o_stuff g2o_types_slam3d ${CHOLMOD_LIBRARIES}
        )

add_executable(pose_graph_g2o_lie pose_graph_g2o_lie_algebra.cpp)
target_link_libraries(pose_graph_g2o_lie
        g2o_core g2o_stuff
        ${CHOLMOD_LIBRARIES}
        ${Sophus_LIBRARIES}
        )

报错解决:

Sophus ensure failed in function 'void Sophus::SO3Base<Derived>::normalize() [with Derived = Sophus::SO3<double>]', file '/usr/local/include/sophus/so3.hpp', line 299.
Quaternion (   0.706662 4.32706e-17    0.707551 -4.3325e-17) should not be close to zero!
Aborted (core dumped)

在63行代码出加入return true;

执行结果:

./pose_graph_g2o_lie ../sphere.g2o 
read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0	 chi2= 674837160.579970	 time= 0.476435	 cumTime= 0.476435	 edges= 9799	 schur= 0	 lambda= 6658.554263	 levenbergIter= 1
iteration= 1	 chi2= 234706314.970484	 time= 0.458582	 cumTime= 0.935017	 edges= 9799	 schur= 0	 lambda= 2219.518088	 levenbergIter= 1
iteration= 2	 chi2= 142146174.348537	 time= 0.457854	 cumTime= 1.39287	 edges= 9799	 schur= 0	 lambda= 739.839363	 levenbergIter= 1
iteration= 3	 chi2= 83834595.145595	 time= 0.454836	 cumTime= 1.84771	 edges= 9799	 schur= 0	 lambda= 246.613121	 levenbergIter= 1
iteration= 4	 chi2= 41878079.903257	 time= 0.454826	 cumTime= 2.30253	 edges= 9799	 schur= 0	 lambda= 82.204374	 levenbergIter= 1
iteration= 5	 chi2= 16598628.119946	 time= 0.455236	 cumTime= 2.75777	 edges= 9799	 schur= 0	 lambda= 27.401458	 levenbergIter= 1
iteration= 6	 chi2= 6137666.739405	 time= 0.461072	 cumTime= 3.21884	 edges= 9799	 schur= 0	 lambda= 9.133819	 levenbergIter= 1
iteration= 7	 chi2= 2182986.250595	 time= 0.460546	 cumTime= 3.67939	 edges= 9799	 schur= 0	 lambda= 3.044606	 levenbergIter= 1
iteration= 8	 chi2= 732676.668220	 time= 0.459353	 cumTime= 4.13874	 edges= 9799	 schur= 0	 lambda= 1.014869	 levenbergIter= 1
iteration= 9	 chi2= 284457.115176	 time= 0.465234	 cumTime= 4.60397	 edges= 9799	 schur= 0	 lambda= 0.338290	 levenbergIter= 1
iteration= 10	 chi2= 170796.109734	 time= 0.474433	 cumTime= 5.07841	 edges= 9799	 schur= 0	 lambda= 0.181974	 levenbergIter= 1
iteration= 11	 chi2= 145466.315841	 time= 0.481857	 cumTime= 5.56026	 edges= 9799	 schur= 0	 lambda= 0.060658	 levenbergIter= 1
iteration= 12	 chi2= 142373.179500	 time= 0.506183	 cumTime= 6.06645	 edges= 9799	 schur= 0	 lambda= 0.020219	 levenbergIter= 1
iteration= 13	 chi2= 137485.756901	 time= 0.468467	 cumTime= 6.53491	 edges= 9799	 schur= 0	 lambda= 0.006740	 levenbergIter= 1
iteration= 14	 chi2= 131202.175668	 time= 0.463868	 cumTime= 6.99878	 edges= 9799	 schur= 0	 lambda= 0.002247	 levenbergIter= 1
iteration= 15	 chi2= 128006.202529	 time= 0.463521	 cumTime= 7.4623	 edges= 9799	 schur= 0	 lambda= 0.000749	 levenbergIter= 1
iteration= 16	 chi2= 127587.860945	 time= 0.467469	 cumTime= 7.92977	 edges= 9799	 schur= 0	 lambda= 0.000250	 levenbergIter= 1
iteration= 17	 chi2= 127578.599359	 time= 0.461724	 cumTime= 8.3915	 edges= 9799	 schur= 0	 lambda= 0.000083	 levenbergIter= 1
iteration= 18	 chi2= 127578.573853	 time= 0.459004	 cumTime= 8.8505	 edges= 9799	 schur= 0	 lambda= 0.000028	 levenbergIter= 1
iteration= 19	 chi2= 127578.573840	 time= 0.461209	 cumTime= 9.31171	 edges= 9799	 schur= 0	 lambda= 0.000018	 levenbergIter= 1
iteration= 20	 chi2= 127578.573840	 time= 0.4623	 cumTime= 9.77401	 edges= 9799	 schur= 0	 lambda= 0.000012	 levenbergIter= 1
iteration= 21	 chi2= 127578.573840	 time= 0.462115	 cumTime= 10.2361	 edges= 9799	 schur= 0	 lambda= 0.000008	 levenbergIter= 1
iteration= 22	 chi2= 127578.573840	 time= 0.463833	 cumTime= 10.7	 edges= 9799	 schur= 0	 lambda= 0.000005	 levenbergIter= 1
iteration= 23	 chi2= 127578.573840	 time= 0.467892	 cumTime= 11.1678	 edges= 9799	 schur= 0	 lambda= 0.000004	 levenbergIter= 1
iteration= 24	 chi2= 127578.573840	 time= 0.923353	 cumTime= 12.0912	 edges= 9799	 schur= 0	 lambda= 0.000005	 levenbergIter= 2
iteration= 25	 chi2= 127578.573840	 time= 3.78778	 cumTime= 15.879	 edges= 9799	 schur= 0	 lambda= 871.504266	 levenbergIter= 8
iteration= 26	 chi2= 127578.573840	 time= 3.25966	 cumTime= 19.1386	 edges= 9799	 schur= 0	 lambda= 1218451276.310652	 levenbergIter= 7
iteration= 27	 chi2= 127578.573840	 time= 1.42473	 cumTime= 20.5634	 edges= 9799	 schur= 0	 lambda= 6498406806.990145	 levenbergIter= 3
iteration= 28	 chi2= 127578.573840	 time= 4.88181	 cumTime= 25.4452	 edges= 9799	 schur= 0	 lambda= 234129779795701684202635264.000000	 levenbergIter= 10
saving optimization results ...

g2o_viewer查看:

g2o_viewer result_lie.g2o 

?课后习题:

1. 如果将位姿图中的误差定义为: Δ ξ i , j = ξ i ° ξ j( ? 1) ,推导按照此定义下的左乘扰动雅可比矩阵。

转载于:?视觉SLAM十四讲(第二版)第10讲习题解答 - 知乎

?

?

2.使用右乘更新,推导该情况下的雅克比矩阵。

转载于:视觉SLAM十四讲(第二版)第10讲习题解答 - 知乎


3. 参照g2o 的程序,在Ceres 中实现对“球”位姿图的优化。

转载于:视觉SLAM十四讲(第二版)第10讲习题解答 - 知乎

链接:https://pan.baidu.com/s/1Wi-XTY7Y-x_C_NPbvSpgmA?
提取码:1234

3.cpp

// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2016 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: vitus@google.com (Michael Vitus)

#include <iostream>
#include <fstream>
#include <string>

#include "ceres/ceres.h"
#include "common/read_g2o.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "common/pose_graph_3d_error_term.h"
#include "common/types.h"

DEFINE_string(input, "sphere.g2o", "The pose graph definition filename in g2o format.");

namespace ceres {
namespace examples {

// Constructs the nonlinear least squares optimization problem from the pose
// graph constraints.
void BuildOptimizationProblem(const VectorOfConstraints& constraints,
                              MapOfPoses* poses, ceres::Problem* problem) {
  CHECK(poses != NULL);
  CHECK(problem != NULL);
  if (constraints.empty()) {
    LOG(INFO) << "No constraints, no problem to optimize.";
    return;
  }

  ceres::LossFunction* loss_function = NULL;
  ceres::LocalParameterization* quaternion_local_parameterization =
      new EigenQuaternionParameterization;

  for (VectorOfConstraints::const_iterator constraints_iter =
           constraints.begin();
       constraints_iter != constraints.end(); ++constraints_iter) {
    const Constraint3d& constraint = *constraints_iter;

    MapOfPoses::iterator pose_begin_iter = poses->find(constraint.id_begin);
    CHECK(pose_begin_iter != poses->end())
        << "Pose with ID: " << constraint.id_begin << " not found.";
    MapOfPoses::iterator pose_end_iter = poses->find(constraint.id_end);
    CHECK(pose_end_iter != poses->end())
        << "Pose with ID: " << constraint.id_end << " not found.";

    const Eigen::Matrix<double, 6, 6> sqrt_information =
        constraint.information.llt().matrixL();
    // Ceres will take ownership of the pointer.
    ceres::CostFunction* cost_function =
        PoseGraph3dErrorTerm::Create(constraint.t_be, sqrt_information);

    problem->AddResidualBlock(cost_function, loss_function,
                              pose_begin_iter->second.p.data(),
                              pose_begin_iter->second.q.coeffs().data(),
                              pose_end_iter->second.p.data(),
                              pose_end_iter->second.q.coeffs().data());

    problem->SetParameterization(pose_begin_iter->second.q.coeffs().data(),
                                 quaternion_local_parameterization);
    problem->SetParameterization(pose_end_iter->second.q.coeffs().data(),
                                 quaternion_local_parameterization);
  }

  // The pose graph optimization problem has six DOFs that are not fully
  // constrained. This is typically referred to as gauge freedom. You can apply
  // a rigid body transformation to all the nodes and the optimization problem
  // will still have the exact same cost. The Levenberg-Marquardt algorithm has
  // internal damping which mitigates this issue, but it is better to properly
  // constrain the gauge freedom. This can be done by setting one of the poses
  // as constant so the optimizer cannot change it.
  MapOfPoses::iterator pose_start_iter = poses->begin();
  CHECK(pose_start_iter != poses->end()) << "There are no poses.";
  problem->SetParameterBlockConstant(pose_start_iter->second.p.data());
  problem->SetParameterBlockConstant(pose_start_iter->second.q.coeffs().data());
  
}

// Returns true if the solve was successful.
bool SolveOptimizationProblem(ceres::Problem* problem) {
  CHECK(problem != NULL);

  ceres::Solver::Options options;
  options.max_num_iterations = 200;
  options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
  options.minimizer_progress_to_stdout = true;
  
  ceres::Solver::Summary summary;
  ceres::Solve(options, problem, &summary);

  std::cout << summary.FullReport() << '\n';

  return summary.IsSolutionUsable();
}

// Output the poses to the file with format: id x y z q_x q_y q_z q_w.
bool OutputPoses(const std::string& filename, const MapOfPoses& poses) {
  std::fstream outfile;
  outfile.open(filename.c_str(), std::istream::out);
  if (!outfile) {
    LOG(ERROR) << "Error opening the file: " << filename;
    return false;
  }
  for (std::map<int, Pose3d, std::less<int>,
                Eigen::aligned_allocator<std::pair<const int, Pose3d> > >::
           const_iterator poses_iter = poses.begin();
       poses_iter != poses.end(); ++poses_iter) {
    const std::map<int, Pose3d, std::less<int>,
                   Eigen::aligned_allocator<std::pair<const int, Pose3d> > >::
        value_type& pair = *poses_iter;
    outfile << pair.first << " " << pair.second.p.transpose() << " "
            << pair.second.q.x() << " " << pair.second.q.y() << " "
            << pair.second.q.z() << " " << pair.second.q.w() << '\n';
  }
  return true;
}

bool WriteG2oFile(const std::string& filename, 
		  const MapOfPoses& poses, 
		  const VectorOfConstraints& constraints){
	std::ofstream outfile(filename.c_str());
	if (!outfile) {
	    LOG(ERROR) << "Error opening the file: " << filename;
	    return false;
	}
	
	for (std::map<int, Pose3d, std::less<int>,
                Eigen::aligned_allocator<std::pair<const int, Pose3d> > >::
           const_iterator poses_iter = poses.begin();
       poses_iter != poses.end(); ++poses_iter) {
	    const std::map<int, Pose3d, std::less<int>,
                   Eigen::aligned_allocator<std::pair<const int, Pose3d> > >::
		    value_type& pair = *poses_iter;
	      outfile << pair.second.name() << " " << pair.first << " " 
		      << pair.second.p.transpose() << " "
		      << pair.second.q.x() << " " << pair.second.q.y() << " "
		      << pair.second.q.z() << " " << pair.second.q.w() << '\n';
	}	
	
	for (VectorOfConstraints::const_iterator constraints_iter =
		constraints.begin(); constraints_iter != constraints.end();
	    ++constraints_iter){
	      const Constraint3d& constraint = *constraints_iter;
	      Pose3d pose_r = constraint.t_be;			    
	      outfile << constraint.name() << " " << constraint.id_begin
		      << " " << constraint.id_end << " " 
		      << pose_r.p.transpose() << " "
		      << pose_r.q.x() << " " << pose_r.q.y() << " "
		      << pose_r.q.z() << " " << pose_r.q.w() << " ";
	      
	      const Eigen::Matrix<double, 6, 6> sqrt_information =
			    constraint.information.llt().matrixL();
			    
	      for (size_t i = 0 ; i < 6 ; ++i ){
		  for (size_t j = i ; j < 6 ; ++j){
		      outfile << sqrt_information(i,j) << " ";
		  }
	      }
	      outfile << "\n";
	}
	
	//outfile.close();
	return true;
}
	



}  // namespace examples
}  // namespace ceres

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);
  gflags::ParseCommandLineFlags(&argc, &argv, true);

  CHECK(FLAGS_input != "") << "Need to specify the filename to read.";

  ceres::examples::MapOfPoses poses;
  ceres::examples::VectorOfConstraints constraints;

  CHECK(ceres::examples::ReadG2oFile(FLAGS_input, &poses, &constraints))
      << "Error reading the file: " << FLAGS_input;

  std::cout << "Number of poses: " << poses.size() << '\n';
  std::cout << "Number of constraints: " << constraints.size() << '\n';

//   CHECK(ceres::examples::OutputPoses("poses_original.txt", poses))
//       << "Error outputting to poses_original.txt";

  ceres::Problem problem;
  ceres::examples::BuildOptimizationProblem(constraints, &poses, &problem);

  CHECK(ceres::examples::SolveOptimizationProblem(&problem))
      << "The solve was not successful, exiting.";

//   CHECK(ceres::examples::OutputPoses("poses_optimized.txt", poses))
//       << "Error outputting to poses_original.txt";
  
  CHECK(ceres::examples::WriteG2oFile("result_Ceres.g2o", poses, constraints))
      << "Error outputting to result_Ceres.g2o";

  return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(pose_graph)

set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)

# Eigen
include_directories("/usr/include/eigen3")

# sophus 
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})

find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})

find_package(Gflags REQUIRED)
include_directories(${GFLAGS_INCLUDE_DIRS})

add_executable(pose_graph_3d 3.cpp)
target_link_libraries(pose_graph_3d ceres ${GFLAGS_LIBRARIES})


# add_executable(test test.cpp)
# target_link_libraries(test
#         ${CERES_LIBRARIES}
#         ${CHOLMOD_LIBRARIES}
#         ${Sophus_LIBRARIES}
#         )

error解决:

F1129 21:08:44.134934 13817 3.cpp:208] Check failed: ceres::examples::ReadG2oFile(FLAGS_input, &poses, &constraints) Error reading the file: sphere.g2o
*** Check failure stack trace: ***
    @     0x7fb2007dd1c3  google::LogMessage::Fail()
    @     0x7fb2007e225b  google::LogMessage::SendToLog()
    @     0x7fb2007dcebf  google::LogMessage::Flush()
    @     0x7fb2007dd6ef  google::LogMessageFatal::~LogMessageFatal()
    @     0x55803e6f93db  main
    @     0x7fb1fe1700b3  __libc_start_main
    @     0x55803e6f972e  _start
Aborted (core dumped)

将sphere.g2o 放到build文件夹下面。

执行结果:

./pose_graph_3d 
Number of poses: 2500
Number of constraints: 9799
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  4.772379e+09    0.00e+00    1.58e+06   0.00e+00   0.00e+00  1.00e+04        0    2.36e-02    3.33e-02
   1  2.262672e+08    4.55e+09    3.60e+05   9.61e+02   9.53e-01  3.00e+04        1    2.58e-01    2.91e-01
   2  1.270530e+06    2.25e+08    2.36e+04   3.42e+02   9.95e-01  9.00e+04        1    1.60e+00    1.89e+00
   3  7.829917e+04    1.19e+06    1.16e+03   1.02e+02   1.00e+00  2.70e+05        1    1.98e+00    3.87e+00
   4  7.441786e+04    3.88e+03    2.80e+02   6.98e+01   1.00e+00  8.10e+05        1    6.23e-01    4.49e+00
   5  7.364500e+04    7.73e+02    3.72e+01   7.94e+01   9.71e-01  2.43e+06        1    1.35e+00    5.84e+00
   6  7.299000e+04    6.55e+02    1.06e+02   2.08e+02   4.40e-01  2.43e+06        1    9.08e-01    6.75e+00
   7  7.144054e+04    1.55e+03    8.08e+01   1.90e+02   7.58e-01  2.81e+06        1    3.21e-01    7.07e+00
   8  7.034563e+04    1.09e+03    8.70e+01   2.00e+02   6.60e-01  2.91e+06        1    2.42e+00    9.49e+00
   9  6.921258e+04    1.13e+03    7.66e+01   1.88e+02   7.26e-01  3.20e+06        1    1.30e+00    1.08e+01
  10  6.829885e+04    9.14e+02    7.58e+01   1.88e+02   6.87e-01  3.38e+06        1    2.48e+00    1.33e+01
  11  6.744817e+04    8.51e+02    6.86e+01   1.78e+02   7.16e-01  3.67e+06        1    7.07e-01    1.40e+01
  12  6.673782e+04    7.10e+02    6.49e+01   1.73e+02   7.03e-01  3.94e+06        1    7.00e-01    1.47e+01
  13  6.611361e+04    6.24e+02    5.87e+01   1.64e+02   7.19e-01  4.30e+06        1    7.58e-01    1.54e+01
  14  6.559464e+04    5.19e+02    5.38e+01   1.57e+02   7.17e-01  4.68e+06        1    2.98e+00    1.84e+01
  15  6.515719e+04    4.37e+02    4.81e+01   1.49e+02   7.28e-01  5.17e+06        1    3.68e-01    1.88e+01
  16  6.480192e+04    3.55e+02    4.30e+01   1.41e+02   7.31e-01  5.74e+06        1    6.70e-01    1.94e+01
  17  6.451483e+04    2.87e+02    3.76e+01   1.31e+02   7.42e-01  6.47e+06        1    9.80e-01    2.04e+01
  18  6.429085e+04    2.24e+02    3.26e+01   1.22e+02   7.49e-01  7.38e+06        1    1.91e+00    2.23e+01
  19  6.411960e+04    1.71e+02    2.75e+01   1.13e+02   7.61e-01  8.60e+06        1    4.05e+00    2.64e+01
  20  6.399434e+04    1.25e+02    2.28e+01   1.03e+02   7.72e-01  1.02e+07        1    1.61e+00    2.80e+01
  21  6.390644e+04    8.79e+01    1.82e+01   9.17e+01   7.88e-01  1.27e+07        1    1.80e+00    2.98e+01
  22  6.384895e+04    5.75e+01    1.40e+01   8.03e+01   8.05e-01  1.64e+07        1    1.37e+00    3.12e+01
  23  6.381446e+04    3.45e+01    9.93e+00   6.78e+01   8.30e-01  2.30e+07        1    2.78e+00    3.39e+01
  24  6.379654e+04    1.79e+01    6.39e+00   5.45e+01   8.59e-01  3.65e+07        1    6.49e-01    3.46e+01
  25  6.378909e+04    7.44e+00    3.37e+00   3.96e+01   9.01e-01  7.51e+07        1    3.93e+00    3.85e+01
  26  6.378709e+04    2.01e+00    2.00e+00   2.37e+01   9.50e-01  2.25e+08        1    2.59e+00    4.11e+01
  27  6.378687e+04    2.22e-01    1.97e+00   8.56e+00   9.92e-01  6.76e+08        1    1.66e+00    4.28e+01

Solver Summary (v 2.0.0-eigen-(3.4.0)-lapack-suitesparse-(5.7.1)-cxsparse-(3.2.0)-eigensparse-no_openmp)

                                     Original                  Reduced
Parameter blocks                         5000                     4998
Parameters                              17500                    17493
Effective parameters                    15000                    14994
Residual blocks                          9799                     9799
Residuals                               58794                    58794

Minimizer                        TRUST_REGION

Sparse linear algebra library    SUITE_SPARSE
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver          SPARSE_NORMAL_CHOLESKY   SPARSE_NORMAL_CHOLESKY
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                     4998

Cost:
Initial                          4.772379e+09
Final                            6.378687e+04
Change                           4.772315e+09

Minimizer iterations                       28
Successful steps                           28
Unsuccessful steps                          0

Time (in seconds):
Preprocessor                         0.009657

  Residual only evaluation           0.046179 (28)
  Jacobian & residual evaluation     0.777356 (28)
  Linear solver                     42.494283 (28)
Minimizer                           43.423383

Postprocessor                        0.000665
Total                               43.433705

Termination:                      CONVERGENCE (Function tolerance reached. |cost_change|/cost: 5.519336e-08 <= 1.000000e-06)

g2o_viewer查看:


4. 对“球”中的信息按照时间排序,分别喂给g2o 和gtsam 优化,比较它们的性能差异。

可参考这篇文章:论文精读 | slam中姿态估计的图优化方法比较 - 知乎

5. *阅读iSAM相关论文,理解它是如何实现增量式优化的。

?**********

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-30 15:37:27  更:2021-11-30 15:39:15 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 2:34:06-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码