IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习 朴素贝叶斯分类垃圾邮件 -> 正文阅读

[人工智能]机器学习 朴素贝叶斯分类垃圾邮件

目录

一、前言

二、朴素贝叶斯原理

1.贝叶斯公式:

2.判别模型和生成模型

3.朴素贝叶斯分类器

?4.拉普拉斯修正

5.防溢出策略

6.测试朴素贝叶斯分类器?

6.1构建词向量

6.2 朴素贝叶斯分类训练函数

6.3分类函数

6.4测试函数

三、朴素贝叶斯分类垃圾邮件

1.数据集

?2.代码展示

?3.运行结果


一、前言

对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。

既然是贝叶斯分类算法,那么分类的数学描述又是什么呢?

从数学角度来说,分类问题可做如下定义:已知集合,确定映射规则y = f(),使得任意[公式]有且仅有一个[公式],使得[公式]成立。

?

其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

二、朴素贝叶斯原理

1.贝叶斯公式:

换个表达形式就会明朗很多,如下:?

2.判别模型和生成模型

?判别模型:由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。

生成模型:由数据学习联合概率密度分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)。基本思想是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类,就像上面说的那样。注意了哦,这里是先求出P(X,Y)才得到P(Y|X)的,然后这个过程还得先求出P(X)。P(X)就是你的训练数据的概率分布。

3.朴素贝叶斯分类器

朴素贝叶斯分类器(Na?ve Bayes Classifier)采用了“属性条件独立性假设”,即每个属性独立地对分类结果发生影响。
为方便公式标记,不妨记 P ( C = c | X =x) P ( c |x) ,基于属性条件独立性假设,贝叶斯公式可重写为

?其中d为属性数目,xix 在第i个属性上的取值。

朴素贝叶斯分类器的训练器的训练过程就是基于训练集 D 估计类先验概率 P ( c ),并为每个属性估计条件概率 。 令 表示训练集D 中第 c 类样本组合的集合,则类先验概率:

?

??????????????????????????????????????????? ?

?4.拉普拉斯修正

若某个属性值在训练集中没有与某个类同时出现过,则训练后的模型会出现 over-fitting 现象。比如“敲声 = 清脆”测试例,训练 集中没有该样例,因此连乘式计算的概率值为 0 ,无论其他属性上 明显像好瓜,分类结果都是“好瓜 = 否”,这显然不合理。

?

为了避免其他属性携带的信息,被训练集中未出现的属性值“抹去”,在估计概率值时通常要进行“拉普拉斯修正”: N 表示训练集 D 中可能的类别数,Ni 表示第 i 个属性可能的 取值数,则贝叶斯公式可修正为:

?

5.防溢出策略

在条件概率乘法计算过程中,因子一般较小(均是小于的实数)。当属性数量增多时,会导致累乘结果下溢出现象。在代数中有ln(a*b) = ln(a)+ln(b)因此可以把条件概率累乘转换成对数累加。分类结果仅需对比概率的对数假发运算后的值,以确定划分的类别。

6.测试朴素贝叶斯分类器?

利用25封侮辱性邮件和25封非侮辱性文件对朴素贝叶斯分类器进行测试,其中49封作为训练数据,随机抽取10个作为测试集。

6.1构建词向量

'''
函数说明:创建实验样本
:return: 进行词条切分后的文档集合;类别标签的集合(侮辱性和非侮辱性)
'''
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]          #1表示侮辱性文字,0代表正常言论
    return postingList,classVec
 
#创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
    vocabSet = set([])                      #创建空的集合
    for document in dataSet:
        vocabSet = vocabSet | set(document) #求两个集合的并集
    return list(vocabSet)
 
#根据vocabList词汇表,将每个inputSet词条向量化,向量的每个值为1或0,分别表示该词有或者没有出现在词汇表中
#输入变量:词汇表,某个文档
def setOfWords2Vec(vocabList, inputSet):
    #创建一个其中所含元素都为0的向量
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec
 
#朴素贝叶斯词袋模型
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            #每个词在词袋中可以出现多次。出现则累加
            returnVec[vocabList.index(word)] += 1
    return returnVec

6.2 朴素贝叶斯分类训练函数

#朴素贝叶斯分类器训练函数
'''
函数说明:朴素贝叶斯分类器训练函数
:param trainMatrix: 文档矩阵
:param trainCategory: 文档类别标签向量
:return: 非侮辱类的条件概率数组,侮辱类的条件概率数组,文档属于侮辱类的概率
'''
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                   #训练集的数量,如6个元素
    #print("数量为:",numTrainDocs)
    numWords = len(trainMatrix[0])                    #每个词条向量的长度,如每一个都是32维
    #print("长度为:", numWords)
    #sum(trainCategory)表示将标签向量中的(0,1)相加,即得到1的个数(也就是侮辱性文档数目)
    #标签中“1”表示侮辱,“0”表示非侮辱,所以是统计文档属于侮辱类的概率
    pAbusive = sum(trainCategory)/float(numTrainDocs)
 
    #zeros()创建的数组,其元素值均为0
    #p0Num = zeros(numWords)
    #p1Num = zeros(numWords)
    #p0Denom = 0.0
    #p1Denom = 0.0
 
    #ones()函数可以创建任意维度和元素个数的数组,其元素值均为1
    #创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑方法(为了防止与0相乘)
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    #分母初始化为2,拉普拉斯平滑方法
    p0Denom = 2.0
    p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] ==1:
            #统计属于侮辱类的条件概率所需的数据,即P(w0/1),P(w1/1)......
            p1Num += trainMatrix[i]            #数组相加
            #print("p1Num:",p1Num)
            p1Denom += sum(trainMatrix[i])     #sum():将trainMatrix[i]中所有元素相加
            #print("p1Denom:",p1Denom)
        else:
            #统计属于非侮辱类的条件概率所需的数据,即P(w0/0),P(w1/0)......
            p0Num += trainMatrix[i]
            p0Denom +=sum(trainMatrix[i])
            #print("p0Denom:",p0Denom)
    p1Vect = log(p1Num/p1Denom)             #p1Num中的每一项取对数
    p0Vect = log(p0Num/p0Denom)             #非侮辱性邮件中单词出现的概率
    return p0Vect,p1Vect,pAbusive

6.3分类函数

#朴素贝叶斯分类函数
'''
函数说明:朴素贝叶斯分类函数
:param vec2Classify: 要分类的向量
:param p0Vec: 非侮辱类的条件概率数组
:param p1Vec: 侮辱类的条件概率数组
:param pClass1: 文档属于侮辱类的概率
:return: 0->表示非侮辱类文档;1->表示侮辱类文档
'''
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
    #两个向量对应元素相乘,然后求和
    p1 = sum(vec2Classify * p1Vec) +log(pClass1)
    p0 = sum(vec2Classify * p0Vec) +log(1-pClass1)
    if p1>p0:
        return 1
    else:
        return 0

6.4测试函数

#利用单条数据测试
def testingNB():
    listOPosts,listClasses = loadDataSet()
    # 创建一个包含在所有文档中出现的不重复词的列表
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry=['love','my','dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
    print(testEntry,'分类结果为:',classifyNB(thisDoc,p0V,p1V,pAb))
    testEntry = ['stupid','garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, '分类结果为:', classifyNB(thisDoc, p0V, p1V, pAb))
 
#文件解析函数
def textParse(bigString):           #input is big string, #output is word list
    import re                       #正则表达式工具
    #分割数据,其分隔符是除单词、数字外任意的字符串
    listOfTokens = re.split(r'\W*', bigString)
    #单词全部转小写,过滤没用的短字符串
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]
#垃圾邮件测试函数
def spamTest():
    docList = []           #存放每个邮件的单词向量
    classList = []         #存放邮件对应的标签
    fullText = []
    for i in range(1, 26):
        #读取侮辱类(spam中存储)邮件,并生成单词向量
        wordList = textParse(open('./email/spam/%d.txt' % i).read())
        docList.append(wordList)               #将单词向量存放到docList中
        fullText.extend(wordList)
        classList.append(1)                    #存放对应的类标签,侮辱类为1
        # 读取非侮辱类(ham中存储)邮件,并生成单词向量
        wordList = textParse(open('./email/ham/%d.txt' % i).read())
        docList.append(wordList)               #将单词向量存放到docList中
        fullText.extend(wordList)
        classList.append(0)                    #存放对应的类标签,非侮辱类为0
    #由所有的单词向量生成词库
    # xx = len(docList)
    # yy = list(range(xx))
    # print(xx,yy)
    vocabList = createVocabList(docList)
    trainSet = list(range(50))                      #产生0-49的50个数字
    testIndex = []                                  #存放测试数据的下标
    for i in range(10):
        #从0-49之间随机生成一个下标
        randIndex = int(random.uniform(0, len(trainSet)))
        testIndex.append(trainSet[randIndex])  #提取对应的数据作为测试数据
        del(trainSet[randIndex])              #删除对应的数据,避免下次再选中
    trainDataSet = []                          #存放训练数据(用于词集方法)
    trainClasses = []                          #存放训练数据标签(用于词集方法)
    trainDataSet1 = []                        #存放训练数据(用于词袋方法)
    trainClasses1 = []                        #存放训练数据标签(用于词袋方法)
    for docIndex in trainSet:
        #提取训练数据(词集方法)
        trainDataSet.append(setOfWords2Vec(vocabList, docList[docIndex]))
        #提取训练数据标签
        trainClasses.append(classList[docIndex])
 
        #提取训练数据(词袋方法)
        trainDataSet1.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses1.append(classList[docIndex])
    #开始训练
    p0V, p1V, pSpam = trainNB0(array(trainDataSet), array(trainClasses))
    errorCount = 0                     #统计测试时分类错误的数据个数
    p0V_1, p1V_1, pSpam1 = trainNB0(array(trainDataSet1), array(trainClasses1))
    errorCount1 = 0
    #开始测试分类器
    for Index in testIndex:  # classify the remaining items
        #print("classification:", Index)
        wordVector = setOfWords2Vec(vocabList, docList[Index])   #数据预处理
        # 测试分类器,如果分类不正确,错误个数加1
        if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[Index]:
            errorCount += 1
        wordVector1 = bagOfWords2VecMN(vocabList, docList[Index])  #数据预处理
        if classifyNB(array(wordVector1), p0V_1, p1V_1, pSpam1) != classList[Index]:
            errorCount1 += 1
    #输出分类错误率
    print('词集方法(set)的错误率: ', float(errorCount) / len(testIndex))
    print('词库方法(bag)的错误率: ', float(errorCount1) / len(testIndex))

测试结果:

?

?可见错误率为百分之60

三、朴素贝叶斯分类垃圾邮件

1.数据集

数据集包括两部分,训练数据ham.data(1523条)和spam.data(1232条),测试数据ham.data(250条)和spam.data(501条)。

数据集从github中下载,想要下载的朋友可以点击下面这个链接

update gitignore, provide 50 training and test emails in spam and ham?

部分数据展示:

?2.代码展示

import math
import os
import re
from collections import Counter


class Spamfilter:
    """A naive Bayesian spam filter"""

    def __init__(self, training_dir):
        """ inits Spamfilter with training data
        
        :param training_dir: path of training directory with subdirectories
         '/ham' and '/spam'
        """
        print("Training filter with known ham ...")
        self.ham_table = dict(Counter(dir_tokens(training_dir + "ham/")))
        print("Training filter with known spam...")
        self.spam_table = dict(Counter(dir_tokens(training_dir + "spam/")))
        self.uniq_h_toks = len(self.ham_table)
        self.uniq_s_toks = len(self.spam_table)
        self.total_h_toks = sum(self.ham_table.values())
        self.total_s_toks = sum(self.spam_table.values())
        self.tok_arr = sorted(
            list(self.ham_table.keys()) + list(self.spam_table.keys())
        )
        self.freq_tab = self.create_frequency_table()
        self.file_count = 0
        self.count_spam = 0
        self.count_ham = 0
        self.spam_list = []
        self.ham_list = []

    def create_frequency_table(self):
        """ Generates token frequency table from training emails
        :return:  dict{k,v}:  spam/ham frequencies
        k = (str)token, v = {spam_freq: , ham_freq:, prob_spam:, prob_ham:}
        """
        freq_table = {}
        for tok in self.tok_arr:
            entry = {}
            s_freq = self.spam_table.get(tok, 0)
            entry["spam_freq"] = s_freq
            h_freq = self.ham_table.get(tok, 0)
            entry["ham_freq"] = h_freq
            s_prob = (s_freq + 1 / float(self.uniq_s_toks)) / (self.total_s_toks + 1)
            entry["prob_spam"] = s_prob
            h_prob = (h_freq + 1 / float(self.uniq_h_toks)) / (self.total_h_toks + 1)
            entry["prob_ham"] = h_prob
            freq_table[tok] = entry
        return freq_table

    def prob_spam(self, token):
        """calculates the probability that 'token' is found in spam emails

        :param token: (str)
        :return: (float) probability 'token' is spam based on training emails
        """
        val = self.freq_tab.get(token)
        if val is not None:
            return val["prob_spam"]
       
        return (1.0 / self.uniq_s_toks) / (self.total_s_toks + 1)

    def prob_ham(self, token):
        """calculates the probability that 'token' is found in ham emails

        :param token: (str)
        :return: (float) probability 'token' is ham based on training emails
        """
        val = self.freq_tab.get(token)
        if val is not None:
            return val["prob_ham"]
    
        return (1.0 / self.uniq_h_toks) / (self.total_h_toks + 1)

    def prob_msg_spam(self, filepath):
        """Calculates the probability that a message is spam

        :param filepath: (str) path of email
        :return: (float) probability message is spam
        """
        toks = file_tokens(filepath)
        sm = 0
        for tok in toks:
            sm += math.log10(self.prob_spam(tok))
        return sm

    def prob_msg_ham(self, filepath):
        """Calculates the probability that a message is ham

        :param filepath: (str) path of email
        :return: (float) probability message is ham
        """
        toks = file_tokens(filepath)
        sm = 0
        for tok in toks:
            sm += math.log10(self.prob_ham(tok))
        return sm

    def classify(self, filepath):
        """classifies a file as spam or ham based on training data

        :param filepath:
        :return: (boolean) True->spam, False->ham
        """
        self.file_count += 1
        if self.prob_msg_spam(filepath) > self.prob_msg_ham(filepath):
            self.count_spam += 1
            self.spam_list.append(filepath)
            return True
        else:
            self.count_ham += 1
            self.ham_list.append(filepath)
            return False

    def classify_all(self, dir_path, known_type="spam"):
        """Classifies all emails in a testing directory and maintains count of errors

        :param dir_path: path of testing directory
        :param known_type: str: the known type of testing directory
        """
        self.ham_list = []
        self.spam_list = []
        self.file_count = 0
        self.count_spam = 0
        self.count_ham = 0
        print("\nClassifying all emails found in directory: ./" + dir_path)

        try:
            for f in os.listdir(dir_path):
                self.classify(dir_path + f)
                if known_type == "spam":
                    correct = self.count_spam / float(self.file_count)
                else:
                    correct = self.count_ham / float(self.file_count)

            print("Total spam:{:8d}".format(self.count_spam))
            print("Total ham: {:8d}".format(self.count_ham))
            print("Correctly classified: {:6.2f}%".format(correct * 100))
        except FileNotFoundError as e:
            print("ERROR: classify_all() failed " + str(e))

    def clean_table(self, min_freq):
        """Removes entries from frequency table if they are deemed poor indicators.
        or if combined spam/ham frequency is below 'min_freq'

        :param min_freq: if total token count below threshold, delete from table
        """
        rm_keys = []
        for k, v in self.freq_tab.items():
            if (
                v["spam_freq"] + v["ham_freq"] < min_freq
                or 0.45 < (v["prob_spam"] / (v["prob_spam"] + v["prob_ham"])) < 0.55
            ):
                rm_keys.append(k)
        for k in rm_keys:
            print("deleting " + str(k) + " from freq table in clean()")
            del self.freq_tab[k]

    def print_table_info(self):
        """ Print training info:
            - unique tokens in ham and spam, number of emails in training set"""
        print("\n=======================================")
        print("TRAINING AND FREQUENCY TABLE INFO")
        print("=======================================")
        print("Unique tokens in spam messages:{:8d}".format(len(self.spam_table)))
        print("Unique tokens in ham messages: {:8d}".format(len(self.ham_table)))
        print("Unique tokens in ALL messages: {:8d}".format(len(self.freq_tab)))
        print("Num spam e-mails:{:22d}".format(len(os.listdir("emails/testing/spam/"))))
        print("Num ham e-mails: {:22d}".format(len(os.listdir("emails/testing/ham/"))))


def tokens(text, tok_size=3):
    """ Returns a list of all substrings contained in 'text' of size 'tok_size'

    :param text: (string) text to tokenize
    :param tok_size: length of substrings
    :return: (list) tokens of 'text'
    """
    return [text[i : i + tok_size] for i in range(len(text) - tok_size + 1)]


def clean_split(in_str):
    """ Removes all non-alphanum chars and splits string at whitespace, downcase

    :param in_str: (str) target string
    :return: (list) cleaned strings
    """
    return re.sub(r"[^\s\w]|_", "", in_str).lower().split()


def file_tokens(filepath):
    """ tokenizes all strings contained in 'filepath' after removing \
     all non-alphanum chars and splitting strings at whitespace

    :param filepath: path of target file
    :return: list of tokens
    """
    toks = []
    try:
        with open(filepath, encoding="utf8", errors="ignore") as fp:
            for line in fp:
                words = clean_split(line)
                toks.extend(words)
    except FileNotFoundError as e:
        print("Error:" + str(e))
    return [x for x in toks if len(x) < 10]


def dir_tokens(dir_path):
    """ tokenizes all files contained in 'dir_path'

    :param dir_path: directory containing files to be tokenized
    :return: list of tokens
    """
    dir_toks = []
    try:
        filenames = os.listdir(dir_path)
        for f in filenames:
            dir_toks.extend(file_tokens(dir_path + f))
    except FileNotFoundError as e:
        print("Error:" + str(e))
    return dir_toks


if __name__ == "__main__":
    spamfilter = Spamfilter("emails/training/")
    spamfilter.print_table_info()
    spamfilter.classify_all("emails/testing/spam/", "spam")
    spamfilter.classify_all("emails/testing/ham/", "ham")

?3.运行结果

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-11-30 15:37:27  更:2021-11-30 15:39:17 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 2:42:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码