-
LeNet(1998)  LeNet是早期成功的神经网络;先使用卷积层来学习图片空间信息,然后通过池化层来降低卷积层对图片的敏感度,最后使用全连接层来转换到类别空间。 -
AlexNet(2012) 
From LeNet (left) to AlexNet (right).
AlexNet本质上是更大更深的LeNet;主要改进是加入了丢弃法(dropout)、激活函数从sigmoid变到ReLU(减缓梯度消失)、MaxPooling、数据增强;计算机视觉方法论的改变。 -
VGG(2014) 
From AlexNet to VGG that is designed from building blocks.
VGG可以看作是更大更深的AlexNet(重复的VGG块);VGG使用可重复使用的卷积块来构建深度神经网络,不同的卷积块个数和超参数可以得到不同复杂度的变种。 import torch
from torch import nn
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
return nn.Sequential(*layers)
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
def vgg(conv_arch):
conv_blks = []
in_channels = 1
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
|