IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> R基于密度的噪声应用聚类DBScan -> 正文阅读

[人工智能]R基于密度的噪声应用聚类DBScan

基于密度的噪声应用聚类 (?DBScan?) 是一种无监督学习非线性算法。它确实使用了密度可达性和密度连通性的思想。数据被划分为具有相似特征或集群的组,但不需要事先指定这些组的数量。集群被定义为密集连接点的最大集合。它在带有噪声的空间数据库中发现任意形状的簇。

理论

在 DBScan 聚类中,对维度距离曲线的依赖更多。算法如下:


?

  1. 随机选择一个点p
  2. 根据邻域的最大半径 (EPS) 和 eps 邻域内的最小点数 (Min Pts),检索从 p 密度可达的所有点。
  3. 如果邻域中的点数大于 Min Pts,则 p 是核心点。
  4. 对于 p 个核心点,形成一个集群。如果 p 不是核心点,则将其标记为噪声/异常值并移至下一个点。
  5. 继续该过程,直到处理完所有点。

DBScan 集群对顺序不敏感。

数据集

Iris数据集包含来自 3 种鸢尾属植物(Iris setosa、Iris virginica、Iris versicolor)中的每一种的 50 个样本,以及由英国统计学家和生物学家 Ronald Fisher 在 1936 年的论文 The use of multiple measures in taxonomic questions 中引入的多元数据集。从每个样本测量四个特征,即萼片和花瓣的长度和宽度,基于这四个特征的组合,Fisher 开发了一个线性判别模型来区分物种。

# Loading data
data(iris)
???
# Structure?
str(iris)

对数据集执行 DBScan

在包含 11 个人和 6 个变量或属性的数据集上使用 DBScan 聚类算法

# Installing Packages
install.packages("fpc")
??
# Loading package
library(fpc)
??
# Remove label form dataset
iris_1 <- iris[-5]
??
# Fitting DBScan clustering Model?
# to training dataset
set.seed(220)? # Setting seed
Dbscan_cl <- dbscan(iris_1, eps = 0.45, MinPts = 5)
Dbscan_cl
??
# Checking cluster
Dbscan_cl$cluster
??
# Table
table(Dbscan_cl$cluster, iris$Species)
??
# Plotting Cluster
plot(Dbscan_cl, iris_1, main = "DBScan")
plot(Dbscan_cl, iris_1, main = "Petal Width vs Sepal Length")

输出:

  • 模型 dbscan_cl:

    在模型中,有 150 个点,最小点数为 5,eps 为 0.5。

  • 集群识别:

    显示了模型中的集群。

  • 绘图集群:

    DBScan 簇是用 Sepal.Length、Sepal.Width、Petal.Length、Petal.Width 绘制的。

    该图绘制在 Petal.Width 和 Sepal.Length 之间。

因此,DBScan 聚类算法也可以形成不寻常的形状,这对于在行业中查找非线性形状的集群很有用。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-05 12:02:52  更:2021-12-05 12:05:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 0:27:01-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码