IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【练习/sklearn库基础】导入sklearn库自带的乳腺癌数据集,分别使用GaussianNB、MultinomialNb、BernouliNB、SVM及KNN5种分类器进行分类预测 -> 正文阅读

[人工智能]【练习/sklearn库基础】导入sklearn库自带的乳腺癌数据集,分别使用GaussianNB、MultinomialNb、BernouliNB、SVM及KNN5种分类器进行分类预测

声明:
1、 学生刚开始学习python,代码会有很多不严谨,也较为粗糙,单纯用于广大网友参考,希望能起到一定的帮助
2、 如果要转载,请标记出来源
3、本文纯粹用于技术练习,请勿用作非法途径
4、如果有问题请在评论区指出,虚心接受立马改正
做题途中所遇问题:

代码块:

在这里插入代码片
#4、导入sklearn库自带的乳腺癌数据集,分别使用GaussianNB、MultinomialNb、BernouliNB、SVM及KNN5种分类器进行分类预测,并比较输出5种分类器预测的准确率优劣。
#sklearn数据库中的乳腺癌采集数据
from sklearn import datasets
#朴素贝叶斯

from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
#SVM
from sklearn.svm import SVC
#KNN
from sklearn.neighbors import KNeighborsClassifier
#数据集分割
from sklearn.model_selection import train_test_split

cancers=datasets.load_breast_cancer()
X=cancers.data
Y=cancers.target
# 注意返回值: 训练集train,x_train,y_train,测试集test,x_test,y_test
# x_train为训练集的特征值,y_train为训练集的目标值,x_test为测试集的特征值,y_test为测试集的目标值
# 注意,接收参数的顺序固定
# 训练集占80%,测试集占20%
#此处是将数据集拆分为训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(X, Y, test_size=0.2)
#朴素贝叶斯
#高斯贝叶斯分类器
model_linear =GaussianNB()
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('高斯贝叶斯训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#多项式贝叶斯分类器
model_linear =MultinomialNB()
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('多项式贝叶斯训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#伯努利贝叶斯分类器
model_linear=BernoulliNB()
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('伯努利贝叶斯训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#SVM法

model_linear = SVC(C=1.0, kernel='linear')  # 线性核
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('SVM法训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#KNN法
model_linear =KNeighborsClassifier(n_neighbors=15)
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('KNN法训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)

结果:
在这里插入图片描述
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-06 15:15:13  更:2021-12-06 15:18:53 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 2:28:39-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码