IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 时序预测工具库(Prophet)介绍+代码 -> 正文阅读

[人工智能]时序预测工具库(Prophet)介绍+代码

参考内容
时间序列模型Prophet使用详细讲解
初识Prophet模型(一)-- 理论篇

一、Prophet 简介

Prophet是Facebook开源的时间序列预测算法,可以有效处理节假日信息,并按周、月、年对时间序列数据的变化趋势进行拟合。根据官网介绍,Prophet对具有强烈周期性特征的历史数据拟合效果很好,不仅可以处理时间序列存在一些异常值的情况,也可以处理部分缺失值的情形。算法提供了基于Python和R的两种实现方式。

从论文上的描述来看,这个 prophet 算法是基于时间序列分解和机器学习的拟合来做的,其中在拟合模型的时候使用了 pyStan 这个开源工具,因此能够在较快的时间内得到需要预测的结果。

二、Prophet 适用场景

Prophet适用于具有明显的内在规律的商业行为数据,例如:有如下特征的业务问题:
● 有至少几个月(最好是一年)的每小时、每天或每周观察的历史数据;
● 有多种人类规模级别的较强的季节性趋势:每周的一些天和每年的一些时间;
● 有事先知道的以不定期的间隔发生的重要节假日(比如国庆节);
● 缺失的历史数据或较大的异常数据的数量在合理范围内;
● 有历史趋势的变化(比如因为产品发布);
● 对于数据中蕴含的非线性增长的趋势都有一个自然极限或饱和状态。

三、Prophet 算法的输入输出

在这里插入图片描述
上图为一个时间序列场景:
● 黑色表示原始的时间序列离散点
● 深蓝色的线表示使用时间序列来拟合所得到的取值
● 浅蓝色的线表示时间序列的一个置信区间,也就是所谓的合理的上界和下界
● prophet 所做的事情就是:

  • 输入已知的时间序列的时间戳和相应的值;
  • 输入需要预测的时间序列的长度;
  • 输出未来的时间序列走势。
  • 输出结果可以提供必要的统计指标,包括拟合曲线,上界和下界等。
    传入prophet的数据分为两列 ds 和 y ,ds表示时间序列的时间戳,y表示时间序列的取值

其中:
● ds是pandas的日期格式,样式类似与YYYY-MM-DD for a date or YYYY-MM-DD HH:MM:SS;
● y列必须是数值型,代表着我们希望预测的值。

通过 prophet 的计算,可以计算出:
● yhat,表示时间序列的预测值
● yhat_lower,表示预测值的下界
● yhat_upper,表示预测值的上界

四、Prophet 算法原理

算法模型:
在这里插入图片描述

模型整体由三部分组成:
● growth(增长趋势)
● seasonality(季节趋势)
● holidays(节假日对预测值的影响)
其中:
● g(t) 表示趋势项,它表示时间序列在非周期上面的变化趋势;
● s(t) 表示周期项,或者称为季节项,一般来说是以周或者年为单位;
● h(t) 表示节假日项,表示时间序列中那些潜在的具有非固定周期的节假日对预测值造成的影响;
● 即误差项或者称为剩余项,表示模型未预测到的波动, 服从高斯分布;
Prophet 算法就是通过拟合这几项,然后最后把它们累加起来就得到了时间序列的预测值。

五、与机器学习算法的对比

与先进的机器学习算法如LGBM相比,Prophet作为一个时间序列的工具。
优点就是不需要特征工程就可以得到趋势,季节因素和节假日因素。
但是这同时也是它的缺点之一,它无法利用更多的信息,如在预测商品的销量时,无法利用商品的信息,门店的信息,促销的信息等。

因此,寻找一种融合的方法是一个迫切的需求。

六、代码

6.1 依赖安装

# 安装pystan
conda install pystan

# 安装plotly
conda install plotly -y

# 安装prophet
sudo pip install fbprophet

6.2 预测demo

测试数据集
example_wp_log_peyton_manning.csv
在这里插入图片描述

import pandas as pd
from fbprophet import Prophet
import matplotlib.pyplot as plt

# 读入数据集
df = pd.read_csv('data/example_wp_log_peyton_manning.csv')
print(df.head())
# 拟合模型
m = Prophet()
m.fit(df)

# 构建待预测日期数据框,periods = 365 代表除历史数据的日期外再往后推 365 天
future = m.make_future_dataframe(periods=365)
future.tail()
# 预测数据集
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
# 展示预测结果
m.plot(forecast)
# 预测的成分分析绘图,展示预测中的趋势、周效应和年度效应
m.plot_components(forecast)
plt.show()

6.3 效果图

在这里插入图片描述
在这里插入图片描述

七、参考资料

时间序列模型Prophet使用详细讲解
Prophet官网
github项目
论文:Forecasting at scale
Facebook 时间序列预测算法 Prophet 的研究

八、官方链接:

● 论文:《Forecasting at scale》,https://peerj.com/preprints/3190/
● github:https://github.com/facebook/prophet
● 官网:https://facebook.github.io/prophet/

九、案例链接:

● 预测股价并进行多策略交易:https://mp.weixin.qq.com/s/bf_CHcoZMjqP6Is4ebD58g
● 预测Medium每天发表的文章数:https://mp.weixin.qq.com/s/1wujYYDP_P2uerZzZBaspg
● 预测网站流量:https://pbpython.com/prophet-overview.html
● 预测空气质量:https://mp.weixin.qq.com/s/S-NNG7BmviitBmMBJRJSRQ
● 预测客运量:https://www.analyticsvidhya.com/blog/2018/05/generate-accurate-forecasts-facebook-prophet-python-r/
● 疫情预测分析:https://mp.weixin.qq.com/s/fZpsy1bQ3Olhng1P5p5WAg
● 原理讲解:https://mp.weixin.qq.com/s/675ASxDSVH_8BX6W8WRRqg
● 知乎专栏:https://zhuanlan.zhihu.com/p/52330017
● 股票价格预测:https://mp.weixin.qq.com/s/78xpmsbC2N1oZ3UIMm29hg
● 高致病性传染病的传播趋势预测——时间序列预测算法Prophet:https://aistudio.baidu.com/aistudio/projectdetail/525311?channelType=0&channel=0

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-08 13:48:54  更:2021-12-08 13:49:22 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 0:51:26-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码