IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 目标检测算法分类 -> 正文阅读

[人工智能]目标检测算法分类

目标检测算法分类:

1、两步走的目标检测:先找出候选的一些区域,再对区域进行调整分类

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 代表:R-CNN、SPP-net、Fast R-CNN、Faster R-CNN

2、端到端的目标检测:采用一个网络一步到位,输入图片,输出有哪些物体,物体在什么位置

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?代表:YOLO、SSD

?

目标检测的任务:

分类原理:

? ? ? ? 如下是一张CNN组成图,输入一张图片,经过其中卷积、激活、池化相关层,最后加入全连接层达到分类概率的效果。

?分类的损失与优化:

? ? ? ? 在训练的时候需要计算每个样本的损失,那么CNN做分类的时候使用softmax函数计算结果,损失为交叉熵损失

? ? ? ? ?对于目标检测来说不仅仅是分类这样简单的一个图片输出一个结果,而且还需要输出图片中目标的位置信息,所以从分类到检测,如下图标记了过程:

检测的任务:

分类:

? ? ? ? N个类别

? ? ? ? 输入:图片

? ? ? ? 输出:类别标签

? ? ? ? 评估指标:Accuracy

?

定位:

? ? ? ? N个类别

? ? ? ? 输入:图片

? ? ? ? 输出:物体的位置坐标

? ? ? ? 主要评估指标:IOU

? ? ? ? 其中我们得出来的(x,y,w,h)有一个专业的名词,叫做bounding box(bbox)?

物体位置:

x,y,w,h:x,y:物体的中心点位置,以及中心点距离物体两边的长款

xmin,ymin,xmax,ymax:物体位置的左上角、右下角坐标

目标定位的简单实现思路:

? ? ? ? 在分类的时候我们直接输出各个类别的概率,如果加上定位的话,我们可以考虑在 网络的最后输出加上位置信息。(增加一段全连接输出4个位置,做损失计算)

回归位置:

增加一个全连接层,即为FC1、FC2

FC1:作为类别的输出

FC2:作为这个物体位置数值的输出

? ? ? ? ?假设有10个类别,输出[p1,p2,p3,...,p10],然后输出这一个对象的四个位置信息[x,y,w,h]。同理要知道网络输出什么,如果衡量整个网络的损失

? ? ? ? 对于分类的概率,还是使用交叉熵损失

? ? ? ? 位置信息具体的数值,可使用MSE均方误差损失(L2损失)

如下所示:

两种Bounding box名称:

在目标检测当中,对bbox主要由两种类别。

? ? ? ? Ground-truth bounding box:图片当中真实标记的框

? ? ? ? Predicted bounding box:预测的时候标记的框

一般在目标检测当中,我们预测的框可能有多个,真实框也有很多个。

目标检测-Overfeat模型

滑动窗口:

目标检测的暴力方法是从左到右、从上到下滑动窗口,利用分类识别目标。

? ? ? ? 为了在不同观察距离处检测不同的目标类型,使用不同大小和宽高比的窗口

?注:这样就编程每张子图偏输出类别以及位置,变成分类问题。

但是滑动窗口需要初始设定一个固定大小的窗口,这就遇到了一个问题,有些物体适应框不一样

? ? ? ? ?所以需要提前设定K个窗口,每个窗口滑动提取M个,总共K*M个图片,通常会直接将图像变形转换成固定大小的图像,变形图像块被输入CNN分类器中,提取特征后,我们使用一些分类器识别类别和该边界框的另一个线性回归器。

Overfeat模型总结:

????????这种方法类似一种暴力穷举的方法,会消耗大量的计算力量,并且由于窗口大小问题可能会造成效果不佳,但是提供了一种解决目标检测问题的思路。

R-CNN:

? ? ? ? 不使用暴力方法,而是用候选区域方法(region propasal method),创建目标检测的区域改变了图像领域实现五团体检测模型思路,R-CNN是以深度神经网络为基础的物体检测的模型。

(但是对于多个目标的情况,就不能以固定个数输出物体的位置值)

?步骤(以AlexNet网络为基准)

1、找出图片中可能存在目标的候选区域region proposal

2、将候选区域调整为适应AlexNet网络的输入图像的大小227*227,通过CNN对候选区域提取特征向量,2000个建议框的CNN特征组合成网络Alex*Net最终输出:2000*4096维矩阵

3、将2000*4096维特征经过SVM分类器(20种分类,SVM是二分类器,则有20个SVM),获得2000*20种类别矩阵。

4、分别对2000*20维矩阵中进行非极大值抑制(NMS:non-maximum suppression)提出重叠建议框,得到与目标物体最高的一些建议框

5、修正bbox,对bbox做回归微调

CNN网络提取特征:

在候选区域的基础上提取出更高级、更抽象的特征,这些高级特征是作为下一步的分类器、回归的输入数据。

?提取这些特征将会保存在磁盘中(这些提取的特征才是真正的要训练的数据)

特征向量训练分类器SVM:

1、假设一张图片的2000个候选区域,那么提取出来的就是2000*4096这样的特征向量(R-CNN当中默认CNN层输出4096特征向量)

2、R-CNN选用SVM进行二分类。假设检测20个分类,那么会提供20个不同类别的SVM分类器,每个分类器都会对2000个候选区域的特征向量分别判断一次,这样得出[2000,20]的得分矩阵,如下图所示

每个SVM分类器做的事情,判断2000个候选区域是某类别,还是背景

非极大抑制(NMS):

目的:筛选候选区域,目标是一个物体只保留一个最优的框,来抑制那些冗余的候选框

迭代过程:

1、对于所有的2000个候选区域得分进行概率筛选,0.5

2、剩余的候选框

? ? ? ? ? ? ? ? 假设图片真实物体个数为2(N),筛选之后候选框为5(P),计算N中每个物体位置与所有P的交并比loU计算,得到P中每个候选框对应loU最高的N中一个

? ? ? ? ? ? ? ? 如下图,A,C候选框对应左边车辆,B,D,E对应右边车辆

?

?假如现在滑动窗口有:A、B、C、D、E5个候选框

? ? ? ? 第一轮:对于右边车辆,假设B是得分最高的,与B的loU>0.5删除。现在与B计算loU,DE结果>0.5,剔除DE,B作为一个预测结果。

? ? ? ? 第二轮:对于左边车辆,AC中,A的得分最高,与A计算loU,C的结果>0.5,剔除C,A作为一个结果

最终结果为在这个5个中检测出了两个目标为A和B

SS算法得到的物体位置已经固定了,但是我们筛选出的位置不一定就真的特别准确,需要对A和B进行最后的修正

修正候选区域:

那么通过非最大一直筛选出来的候选框就不一定非常准确怎么办?R-CNN提供了这样的方法,建立了一个bbox regressor

? ? ? ? 回归用于筛选候选区域,实质

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-08 13:48:54  更:2021-12-08 13:49:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 1:41:39-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码