简单粗暴,直接上代码。
numpy
import numpy as np
xx = np.arange(3, 7)
yy = np.arange(0, 10)
grid_x, grid_y = np.meshgrid(xx, yy)
print(grid_x, grid_x.shape)
print(grid_y, grid_y.shape)
[[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]
[3 4 5 6]] (10, 4)
[[0 0 0 0]
[1 1 1 1]
[2 2 2 2]
[3 3 3 3]
[4 4 4 4]
[5 5 5 5]
[6 6 6 6]
[7 7 7 7]
[8 8 8 8]
[9 9 9 9]] (10, 4)
torch
imoprt torch
xx = torch.arange(3, 7)
yy = torch.arange(0, 10)
grid_x, grid_y = torch.meshgrid(xx, yy)
print(grid_x, grid_x.shape)
print(grid_y, grid_y.shape)
tensor([[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]]) torch.Size([4, 10])
tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]) torch.Size([4, 10])
结论
- numpy, meshgrid(xx, yy) ? shape
(n_y, n_x) - torch, meshgrid(xx, yy) ? shape
(n_x, n_y)
千万注意!为了不搞混,建议记住一种,另一种通过tensor-numpy转换来得到。其实numpy.meshgrid 才是正常人的理解,因为
n
y
ny
ny 是行,
n
x
nx
nx 是列。使用torch.meshgrid 时注意关键字位置应该为grid_y, grid_x= torch.meshgrid(yy, xx) 才能得到想要的
n
y
×
n
x
ny \times nx
ny×nx 网格。 因此时常会见到以下操作:
import torch
grid_y, grid_x = torch.meshgrid([torch.arange(h), torch.arange(w)])
grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()
|