1 数据输入
import pandas as pd
df = pd.DataFrame({
'student_id': [1,2,3,4,5,6,7],
'country': ['China', 'USA', 'UK', 'Japan', 'Korea', 'China', 'USA'],
'education': ['Master', 'Bachelor', 'Bachelor', 'Master', 'PHD', 'PHD', 'Bachelor'],
'target': [1, 0, 1, 0, 1, 0, 1]
})
df.head(10)
| student_id | country | education | target |
---|
0 | 1 | China | Master | 1 |
---|
1 | 2 | USA | Bachelor | 0 |
---|
2 | 3 | UK | Bachelor | 1 |
---|
3 | 4 | Japan | Master | 0 |
---|
4 | 5 | Korea | PHD | 1 |
---|
5 | 6 | China | PHD | 0 |
---|
6 | 7 | USA | Bachelor | 1 |
---|
2 特征编码
2.1 One Hot Encoding 独热编码
pd.get_dummies(df, columns=['education'])
| student_id | country | target | education_Bachelor | education_Master | education_PHD |
---|
0 | 1 | China | 1 | 0 | 1 | 0 |
---|
1 | 2 | USA | 0 | 1 | 0 | 0 |
---|
2 | 3 | UK | 1 | 1 | 0 | 0 |
---|
3 | 4 | Japan | 0 | 0 | 1 | 0 |
---|
4 | 5 | Korea | 1 | 0 | 0 | 1 |
---|
5 | 6 | China | 0 | 0 | 0 | 1 |
---|
6 | 7 | USA | 1 | 1 | 0 | 0 |
---|
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
ohe.fit_transform(df[['country']]).toarray()
array([[1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1.]])
2.2 Label Encoding 标签编码
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['country_LabelEncoder'] = le.fit_transform(df['country'])
df.head(10)
| student_id | country | education | target | country_LabelEncoder |
---|
0 | 1 | China | Master | 1 | 0 |
---|
1 | 2 | USA | Bachelor | 0 | 4 |
---|
2 | 3 | UK | Bachelor | 1 | 3 |
---|
3 | 4 | Japan | Master | 0 | 1 |
---|
4 | 5 | Korea | PHD | 1 | 2 |
---|
5 | 6 | China | PHD | 0 | 0 |
---|
6 | 7 | USA | Bachelor | 1 | 4 |
---|
df['country_LabelEncoder'] = pd.factorize(df['country'])[0]
df.head(10)
| student_id | country | education | target | country_LabelEncoder |
---|
0 | 1 | China | Master | 1 | 0 |
---|
1 | 2 | USA | Bachelor | 0 | 1 |
---|
2 | 3 | UK | Bachelor | 1 | 2 |
---|
3 | 4 | Japan | Master | 0 | 3 |
---|
4 | 5 | Korea | PHD | 1 | 4 |
---|
5 | 6 | China | PHD | 0 | 0 |
---|
6 | 7 | USA | Bachelor | 1 | 1 |
---|
pd.factorize(df['country'])
(array([0, 1, 2, 3, 4, 0, 1]),
Index(['China', 'USA', 'UK', 'Japan', 'Korea'], dtype='object'))
2.3 Ordinal Encoding 顺序编码
df['education'] = df['education'].map(
{'Bachelor': 1,
'Master': 2,
'PHD': 3})
df.head(10)
| student_id | country | education | target | country_LabelEncoder |
---|
0 | 1 | China | 2 | 1 | 0 |
---|
1 | 2 | USA | 1 | 0 | 1 |
---|
2 | 3 | UK | 1 | 1 | 2 |
---|
3 | 4 | Japan | 2 | 0 | 3 |
---|
4 | 5 | Korea | 3 | 1 | 4 |
---|
5 | 6 | China | 3 | 0 | 0 |
---|
6 | 7 | USA | 1 | 1 | 1 |
---|
2.4 Binary Encoding 二进制编码
import category_encoders as ce
encoder = ce.BinaryEncoder(cols= ['country'])
pd.concat([df, encoder.fit_transform(df['country']).iloc[:, 1:]], axis=1)
| student_id | country | education | target | country_1 | country_2 | country_3 |
---|
0 | 1 | China | Master | 1 | 0 | 0 | 1 |
---|
1 | 2 | USA | Bachelor | 0 | 0 | 1 | 0 |
---|
2 | 3 | UK | Bachelor | 1 | 0 | 1 | 1 |
---|
3 | 4 | Japan | Master | 0 | 1 | 0 | 0 |
---|
4 | 5 | Korea | PHD | 1 | 1 | 0 | 1 |
---|
5 | 6 | China | PHD | 0 | 0 | 0 | 1 |
---|
6 | 7 | USA | Bachelor | 1 | 0 | 1 | 0 |
---|
2.5 Frequency Encoding、Count Encoding
df['country_count'] = df['country'].map(df['country'].value_counts()) / len(df)
df.head(10)
| student_id | country | education | target | country_count |
---|
0 | 1 | China | Master | 1 | 0.285714 |
---|
1 | 2 | USA | Bachelor | 0 | 0.285714 |
---|
2 | 3 | UK | Bachelor | 1 | 0.142857 |
---|
3 | 4 | Japan | Master | 0 | 0.142857 |
---|
4 | 5 | Korea | PHD | 1 | 0.142857 |
---|
5 | 6 | China | PHD | 0 | 0.285714 |
---|
6 | 7 | USA | Bachelor | 1 | 0.285714 |
---|
df['country_count'] = df['country'].map(df['country'].value_counts())
df.head(10)
| student_id | country | education | target | country_count |
---|
0 | 1 | China | Master | 1 | 2 |
---|
1 | 2 | USA | Bachelor | 0 | 2 |
---|
2 | 3 | UK | Bachelor | 1 | 1 |
---|
3 | 4 | Japan | Master | 0 | 1 |
---|
4 | 5 | Korea | PHD | 1 | 1 |
---|
5 | 6 | China | PHD | 0 | 2 |
---|
6 | 7 | USA | Bachelor | 1 | 2 |
---|
2.6 Mean/Target Encoding
df.groupby(['country'])['target'].mean()
country
China 0.5
Japan 0.0
Korea 1.0
UK 1.0
USA 0.5
Name: target, dtype: float64
df['country_target'] = df['country'].map(df.groupby(['country'])['target'].mean())
df.head(10)
| student_id | country | education | target | country_target |
---|
0 | 1 | China | Master | 1 | 0.5 |
---|
1 | 2 | USA | Bachelor | 0 | 0.5 |
---|
2 | 3 | UK | Bachelor | 1 | 1.0 |
---|
3 | 4 | Japan | Master | 0 | 0.0 |
---|
4 | 5 | Korea | PHD | 1 | 1.0 |
---|
5 | 6 | China | PHD | 0 | 0.5 |
---|
6 | 7 | USA | Bachelor | 1 | 0.5 |
---|
df = pd.DataFrame({
'student_id': [1,2,3,4,5,6,7],
'country': ['China', 'USA', 'UK', 'Japan', 'Korea', 'China', 'USA'],
'education': ['Master', 'Bachelor', 'Bachelor', 'Master', 'PHD', 'PHD', 'Bachelor'],
'age': [34.5, 28.9, 19.5, 23.6, 19.8, 29.8, 31.7],
'target': [1, 0, 1, 0, 1, 0, 1]
})
df.head(10)
| student_id | country | education | age | target |
---|
0 | 1 | China | Master | 34.5 | 1 |
---|
1 | 2 | USA | Bachelor | 28.9 | 0 |
---|
2 | 3 | UK | Bachelor | 19.5 | 1 |
---|
3 | 4 | Japan | Master | 23.6 | 0 |
---|
4 | 5 | Korea | PHD | 19.8 | 1 |
---|
5 | 6 | China | PHD | 29.8 | 0 |
---|
6 | 7 | USA | Bachelor | 31.7 | 1 |
---|
df['age_round1'] = df['age'].round()
df['age_round2'] = (df['age'] / 10).astype(int)
df.head(10)
| student_id | country | education | age | target | age_round1 | age_round2 |
---|
0 | 1 | China | Master | 34.5 | 1 | 34.0 | 3 |
---|
1 | 2 | USA | Bachelor | 28.9 | 0 | 29.0 | 2 |
---|
2 | 3 | UK | Bachelor | 19.5 | 1 | 20.0 | 1 |
---|
3 | 4 | Japan | Master | 23.6 | 0 | 24.0 | 2 |
---|
4 | 5 | Korea | PHD | 19.8 | 1 | 20.0 | 1 |
---|
5 | 6 | China | PHD | 29.8 | 0 | 30.0 | 2 |
---|
6 | 7 | USA | Bachelor | 31.7 | 1 | 32.0 | 3 |
---|
df['age_<20'] = (df['age'] <= 20).astype(int)
df['age_20-25'] = ((df['age'] > 20) & (df['age'] <=25)).astype(int)
df['age_20-25'] = ((df['age'] > 25) & (df['age'] <= 30)).astype(int)
df['age_>30'] = (df['age'] > 30).astype(int)
df.head(10)
| student_id | country | education | age | target | age_<20 | age_20-25 | age_>30 |
---|
0 | 1 | China | Master | 34.5 | 1 | 0 | 0 | 1 |
---|
1 | 2 | USA | Bachelor | 28.9 | 0 | 0 | 1 | 0 |
---|
2 | 3 | UK | Bachelor | 19.5 | 1 | 1 | 0 | 0 |
---|
3 | 4 | Japan | Master | 23.6 | 0 | 0 | 0 | 0 |
---|
4 | 5 | Korea | PHD | 19.8 | 1 | 1 | 0 | 0 |
---|
5 | 6 | China | PHD | 29.8 | 0 | 0 | 1 | 0 |
---|
6 | 7 | USA | Bachelor | 31.7 | 1 | 0 | 0 | 1 |
---|
df
| student_id | country | education | age | target | age_<20 | age_20-25 | age_>30 |
---|
0 | 1 | China | Master | 34.5 | 1 | 0 | 0 | 1 |
---|
1 | 2 | USA | Bachelor | 28.9 | 0 | 0 | 1 | 0 |
---|
2 | 3 | UK | Bachelor | 19.5 | 1 | 1 | 0 | 0 |
---|
3 | 4 | Japan | Master | 23.6 | 0 | 0 | 0 | 0 |
---|
4 | 5 | Korea | PHD | 19.8 | 1 | 1 | 0 | 0 |
---|
5 | 6 | China | PHD | 29.8 | 0 | 0 | 1 | 0 |
---|
6 | 7 | USA | Bachelor | 31.7 | 1 | 0 | 0 | 1 |
---|
3 绘图
用具体的取值衡量特征的重要性
%pylab inline
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
data = load_boston()
rf = RandomForestRegressor()
rf.fit(data.data, data.target);
print(rf.feature_importances_)
plt.figure(figsize=(12, 6))
plt.bar(range(1, 14), rf.feature_importances_)
_ = plt.xticks(range(1, 14), data.feature_names)
Populating the interactive namespace from numpy and matplotlib
[0.03932896 0.00111874 0.00558259 0.00072371 0.0233215 0.43068769
0.01233092 0.06505465 0.00364571 0.01419684 0.01678173 0.0108236
0.37640336]
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from lightgbm import LGBMRegressor
data = load_boston()
clf = LGBMRegressor()
clf.fit(data.data, data.target)
plt.figure(figsize=(12, 6))
plt.bar(range(1, 14), clf.feature_importances_)
_ = plt.xticks(range(1, 14), data.feature_names)
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
data = load_boston()
clf = XGBRegressor()
clf.fit(data.data, data.target)
plt.figure(figsize=(12, 6))
plt.bar(range(1, 14), clf.feature_importances_)
_ = plt.xticks(range(1, 14), data.feature_names)
4 Two-Simg实例代码
房价预测,在这整个比赛中的工作。
import os
import sys
import operator
import numpy as np
import pandas as pd
from scipy import sparse
import random
import xgboost as xgb
from xgboost import XGBClassifier, XGBRegressor
from sklearn import model_selection, preprocessing, ensemble
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from collections import defaultdict, Counter
def runXGB(train_X, train_y, val_X, val_y=None, test_X=None,
feature_names=None, seed_val=0, num_rounds=1000):
param = {}
param['objective'] = 'multi:softprob'
param['eta'] = 0.03
param['max_depth'] = 6
param['silent'] = 0
param['num_class'] = 3
param['eval_metric'] = "mlogloss"
param['min_child_weight'] = 1
param['subsample'] = 0.7
param['colsample_bytree'] = 0.7
param['seed'] = seed_val
param['nthread'] = 12
num_rounds = num_rounds
plst = list(param.items())
xgtrain = xgb.DMatrix(train_X, label=train_y)
if val_y is not None:
xgval = xgb.DMatrix(val_X, label=val_y)
watchlist = [ (xgtrain,'train'), (xgval, 'val') ]
model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=50)
else:
model = xgb.train(plst, xgtrain, num_rounds)
xgtest = xgb.DMatrix(test_X)
pred_test_y = model.predict(xgtest)
return pred_test_y, model
这里需要下载训练和测试的文件,看这里。
train_df = pd.read_json('../input/train.json.zip', compression='zip')
test_df = pd.read_json('../input/test.json.zip', compression='zip')
features_to_use = ["bathrooms", "bedrooms", "latitude", "longitude", "price"]
mean_price = int(train_df['price'].mean())
test_df.loc[test_df['price']<200,'price'] = mean_price
train_df.loc[train_df['price']<200,'price'] = mean_price
train_test = pd.concat([train_df, test_df], 0,sort=False)
features = train_test[["features"]].apply(
lambda _: [list(map(str.strip, map(str.lower, x))) for x in _])
n = 5
feature_counts = Counter()
for feature in features.features:
feature_counts.update(feature)
feature = sorted([k for (k,v) in feature_counts.items() if v > n])
feature[:10]
def clean(s):
x = s.replace("-", "")
x = x.replace(" ", "")
x = x.replace("24/7", "24")
x = x.replace("24hr", "24")
x = x.replace("24-hour", "24")
x = x.replace("24hour", "24")
x = x.replace("24 hour", "24")
x = x.replace("common", "cm")
x = x.replace("concierge", "doorman")
x = x.replace("bicycle", "bike")
x = x.replace("pets:cats", "cats")
x = x.replace("allpetsok", "pets")
x = x.replace("dogs", "pets")
x = x.replace("private", "pv")
x = x.replace("deco", "dc")
x = x.replace("decorative", "dc")
x = x.replace("onsite", "os")
x = x.replace("outdoor", "od")
x = x.replace("ss appliances", "stainless")
return x
def feature_hash(x):
cleaned = clean(x, uniq)
key = cleaned[:4].strip()
return key
key2original = defaultdict(list)
k = 4
for f in feature:
cleaned = clean(f)
key = cleaned[:k].strip()
key2original[key].append(f)
def to_tuples():
for f in feature:
key = clean(f)[:k].strip()
yield (f, key2original[key][0])
deduped = list(to_tuples())
df = pd.DataFrame(deduped, columns=["original_feature", "unique_feature"])
dict_rep_features = pd.Series(df['unique_feature'].values, df['original_feature'].values)
test_df['features'] = test_df['features'].apply(lambda x: list(map(str.strip, map(str.lower, x))))\
.apply(lambda x: [dict_rep_features[i] for i in x if i in dict_rep_features.index])\
.apply(lambda x: list(set(x)))
train_df['features'] = train_df['features'].apply(lambda x: list(map(str.strip, map(str.lower, x))))\
.apply(lambda x: [dict_rep_features[i] for i in x if i in dict_rep_features.index])\
.apply(lambda x: list(set(x)))
import math
def cart2rho(x, y):
rho = np.sqrt(x**2 + y**2)
return rho
def cart2phi(x, y):
phi = np.arctan2(y, x)
return phi
def rotation_x(row, alpha):
x = row['latitude']
y = row['longitude']
return x*math.cos(alpha) + y*math.sin(alpha)
def rotation_y(row, alpha):
x = row['latitude']
y = row['longitude']
return y*math.cos(alpha) - x*math.sin(alpha)
def add_rotation(degrees, df):
namex = "rot" + str(degrees) + "_X"
namey = "rot" + str(degrees) + "_Y"
df['num_' + namex] = df.apply(lambda row: rotation_x(row, math.pi/(180/degrees)), axis=1)
df['num_' + namey] = df.apply(lambda row: rotation_y(row, math.pi/(180/degrees)), axis=1)
return df
def operate_on_coordinates(tr_df, te_df):
for df in [tr_df, te_df]:
df["num_rho"] = df.apply(lambda x: cart2rho(x["latitude"] - 40.78222222, x["longitude"]+73.96527777), axis=1)
df["num_phi"] = df.apply(lambda x: cart2phi(x["latitude"] - 40.78222222, x["longitude"]+73.96527777), axis=1)
for angle in [15,30,45,60]:
df = add_rotation(angle, df)
return tr_df, te_df
train_df, test_df = operate_on_coordinates(train_df, test_df)
features_to_use.extend(['num_rho', 'num_phi', 'num_rot15_X', 'num_rot15_Y', 'num_rot30_X',
'num_rot30_Y', 'num_rot45_X', 'num_rot45_Y', 'num_rot60_X',
'num_rot60_Y'])
import re
def cap_share(x):
return sum(1 for c in x if c.isupper())/float(len(x)+1)
for df in [train_df, test_df]:
df['num_cap_share'] = df['description'].apply(cap_share)
df['num_nr_of_lines'] = df['description'].apply(lambda x: x.count('<br /><br />'))
df['num_redacted'] = 0
df['num_redacted'].loc[df['description'].str.contains('website_redacted')] = 1
df['num_email'] = 0
df['num_email'].loc[df['description'].str.contains('@')] = 1
reg = re.compile(".*?(\(?\d{3}\D{0,3}\d{3}\D{0,3}\d{4}).*?", re.S)
def try_and_find_nr(description):
if reg.match(description) is None:
return 0
return 1
df['num_phone_nr'] = df['description'].apply(try_and_find_nr)
features_to_use.extend(['num_cap_share', 'num_nr_of_lines', 'num_redacted',
'num_email', 'num_phone_nr'])
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: DeprecationWarning: Calling np.sum(generator) is deprecated, and in the future will give a different result. Use np.sum(np.fromiter(generator)) or the python sum builtin instead.
after removing the cwd from sys.path.
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: DeprecationWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
from ipykernel import kernelapp as app
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:190: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
self._setitem_with_indexer(indexer, value)
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:20: DeprecationWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
train_df["num_photos"] = train_df["photos"].apply(len)
test_df["num_photos"] = test_df["photos"].apply(len)
train_df["num_features"] = train_df["features"].apply(len)
test_df["num_features"] = test_df["features"].apply(len)
train_df["num_description_words"] = train_df["description"].apply(lambda x: len(x.split(" ")))
test_df["num_description_words"] = test_df["description"].apply(lambda x: len(x.split(" ")))
train_df["created"] = pd.to_datetime(train_df["created"])
test_df["created"] = pd.to_datetime(test_df["created"])
train_df["created_year"] = train_df["created"].dt.year
test_df["created_year"] = test_df["created"].dt.year
train_df["created_month"] = train_df["created"].dt.month
test_df["created_month"] = test_df["created"].dt.month
train_df["created_day"] = train_df["created"].dt.day
test_df["created_day"] = test_df["created"].dt.day
train_df["created_hour"] = train_df["created"].dt.hour
test_df["created_hour"] = test_df["created"].dt.hour
features_to_use.extend(["num_photos", "num_features", "num_description_words","created_year", "created_month", "created_day", "listing_id", "created_hour"])
train_df["price_t"] =train_df["price"]/train_df["bedrooms"]
test_df["price_t"] = test_df["price"]/test_df["bedrooms"]
train_df["price_t"] =train_df["price"]/train_df["bathrooms"]
test_df["price_t"] = test_df["price"]/test_df["bathrooms"]
train_df["room_sum"] = train_df["bedrooms"]+train_df["bathrooms"]
test_df["room_sum"] = test_df["bedrooms"]+test_df["bathrooms"]
train_df["price_t"] =train_df["price"]/train_df["room_sum"]
test_df["price_t"] = test_df["price"]/test_df["room_sum"]
features_to_use.extend(["price_t", "room_sum", "num_description_words"])
start_values = [0,0,0]
index=list(range(train_df.shape[0]))
random.shuffle(index)
a=[np.nan]*len(train_df)
b=[np.nan]*len(train_df)
c=[np.nan]*len(train_df)
for i in range(5):
building_level={}
for j in train_df['manager_id'].values:
building_level[j]= start_values.copy()
test_index=index[int((i*train_df.shape[0])/5):int(((i+1)*train_df.shape[0])/5)]
train_index=list(set(index).difference(test_index))
for j in train_index:
temp=train_df.iloc[j]
if temp['interest_level']=='low':
building_level[temp['manager_id']][0]+=1
if temp['interest_level']=='medium':
building_level[temp['manager_id']][1]+=1
if temp['interest_level']=='high':
building_level[temp['manager_id']][2]+=1
for j in test_index:
temp=train_df.iloc[j]
if sum(building_level[temp['manager_id']])!=0:
a[j]=building_level[temp['manager_id']][0]*1.0/sum(building_level[temp['manager_id']])
b[j]=building_level[temp['manager_id']][1]*1.0/sum(building_level[temp['manager_id']])
c[j]=building_level[temp['manager_id']][2]*1.0/sum(building_level[temp['manager_id']])
train_df['manager_level_low']=a
train_df['manager_level_medium']=b
train_df['manager_level_high']=c
a=[]
b=[]
c=[]
building_level={}
for j in train_df['manager_id'].values:
building_level[j]= start_values.copy()
for j in range(train_df.shape[0]):
temp=train_df.iloc[j]
if temp['interest_level']=='low':
building_level[temp['manager_id']][0]+=1
if temp['interest_level']=='medium':
building_level[temp['manager_id']][1]+=1
if temp['interest_level']=='high':
building_level[temp['manager_id']][2]+=1
for i in test_df['manager_id'].values:
if i not in building_level.keys():
a.append(np.nan)
b.append(np.nan)
c.append(np.nan)
else:
a.append(building_level[i][0]*1.0/sum(building_level[i]))
b.append(building_level[i][1]*1.0/sum(building_level[i]))
c.append(building_level[i][2]*1.0/sum(building_level[i]))
test_df['manager_level_low']=a
test_df['manager_level_medium']=b
test_df['manager_level_high']=c
features_to_use.append('manager_level_low')
features_to_use.append('manager_level_medium')
features_to_use.append('manager_level_high')
train_df["listing_id1"] = train_df["listing_id"] - 68119576.0
test_df["listing_id1"] = test_df["listing_id"] - 68119576.0
train_df["num_price_by_furniture"] = (train_df["price"])/ (train_df["bathrooms"] + train_df["bedrooms"] + 1.0)
test_df["num_price_by_furniture"] = (test_df["price"])/ (test_df["bathrooms"] + test_df["bedrooms"] + 1.0)
train_df["price_latitue"] = (train_df["price"])/ (train_df["latitude"]+1.0)
test_df["price_latitue"] = (test_df["price"])/ (test_df["latitude"]+1.0)
train_df["price_longtitude"] = (train_df["price"])/ (train_df["longitude"]-1.0)
test_df["price_longtitude"] = (test_df["price"])/ (test_df["longitude"]-1.0)
train_df["num_furniture"] = train_df["bathrooms"] + train_df["bedrooms"]
test_df["num_furniture"] = test_df["bathrooms"] + test_df["bedrooms"]
train_df["total_days"] = (train_df["created_month"] -4.0)*30 + train_df["created_day"] + train_df["created_hour"] /25.0
test_df["total_days"] =(test_df["created_month"] -4.0)*30 + test_df["created_day"] + test_df["created_hour"] /25.0
train_df["diff_rank"]= train_df["total_days"]/train_df["listing_id1"]
test_df["diff_rank"]= test_df["total_days"]/test_df["listing_id1"]
features_to_use.extend([ "total_days","diff_rank",
"num_price_by_furniture","price_latitue","price_longtitude",'num_furniture'])
categorical = ["display_address", "manager_id", "building_id", "street_address"]
for f in categorical:
if train_df[f].dtype=='object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train_df[f].values) + list(test_df[f].values))
train_df[f] = lbl.transform(list(train_df[f].values))
test_df[f] = lbl.transform(list(test_df[f].values))
features_to_use.append(f)
train_df["price0"] = (train_df["price"]%10==0).astype(int)
test_df["price0"] = (test_df["price"]%10==0).astype(int)
train_df["manager_count"] = train_df["manager_id"].replace(train_df["manager_id"].value_counts())
test_df["manager_count"] = test_df["manager_id"].replace(train_df["manager_id"].value_counts())
features_to_use.extend(["price0",'manager_count'])
train_df['features'] = train_df["features"].apply(lambda x: " ".join(["_".join(i.split(" ")) for i in x]))
test_df['features'] = test_df["features"].apply(lambda x: " ".join(["_".join(i.split(" ")) for i in x]))
print(train_df["features"].head())
tfidf = CountVectorizer(stop_words='english', max_features=70)
te_sparse = tfidf.fit_transform(test_df["features"])
tr_sparse = tfidf.transform(train_df["features"])
tfidfdesc=TfidfVectorizer(min_df=20, max_features=50, strip_accents='unicode',lowercase =True,
analyzer='word', token_pattern=r'\w{16,}', ngram_range=(1, 2), use_idf=False,smooth_idf=False,
sublinear_tf=True, stop_words = 'english')
train_df['description'] = train_df['description'].apply(lambda x: str(x).encode('utf-8') if len(x)>2 else "nulldesc")
test_df['description'] = test_df['description'].apply(lambda x: str(x).encode('utf-8') if len(x)>2 else "nulldesc")
te_sparsed = tfidfdesc. fit_transform (test_df["description"])
tr_sparsed = tfidfdesc.transform(train_df["description"])
train_X = sparse.hstack([train_df[features_to_use], tr_sparse,tr_sparsed]).tocsr()
test_X = sparse.hstack([test_df[features_to_use], te_sparse,te_sparsed]).tocsr()
target_num_map = {'high':0, 'medium':1, 'low':2}
train_y = np.array(train_df['interest_level'].apply(lambda x: target_num_map[x]))
print(train_X.shape, test_X.shape)
10
10000 elevator concierge fitness_center cats_allowed...
100004 dish_washer hardwood laundry
100007 hardwood no_fee
100013 pre_war
Name: features, dtype: object
(49352, 166) (74659, 166)
preds, model = runXGB(train_X, train_y, val_X=None, val_y=None, test_X=test_X, num_rounds=100)
out_df = pd.DataFrame(preds)
out_df.columns = ["high", "medium", "low"]
out_df["listing_id"] = test_df.listing_id.values
out_df.to_csv("xgb_baseline3.csv", index=False)
cv_scores = []
test_pred = None
kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=2016)
for dev_index, val_index in kf.split(range(train_X.shape[0])):
dev_X, val_X = train_X[dev_index,:], train_X[val_index,:]
dev_y, val_y = train_y[dev_index], train_y[val_index]
preds, model = runXGB(dev_X, dev_y, val_X, val_y, test_X, num_rounds=2000)
if test_pred is None:
test_pred = preds
else:
test_pred += preds
test_pred /= 5
out_df = pd.DataFrame(test_pred)
out_df.columns = ["high", "medium", "low"]
out_df["listing_id"] = test_df.listing_id.values
out_df.to_csv("xgb_baseline3.csv", index=False)
[0] train-mlogloss:1.07775 val-mlogloss:1.07827
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.
Will train until val-mlogloss hasn't improved in 50 rounds.
[1] train-mlogloss:1.05804 val-mlogloss:1.05915
[2] train-mlogloss:1.0391 val-mlogloss:1.04076
[3] train-mlogloss:1.02106 val-mlogloss:1.02331
[4] train-mlogloss:1.00379 val-mlogloss:1.00659
[5] train-mlogloss:0.987297 val-mlogloss:0.990692
[6] train-mlogloss:0.971684 val-mlogloss:0.975621
[7] train-mlogloss:0.956643 val-mlogloss:0.961212
[8] train-mlogloss:0.942392 val-mlogloss:0.947541
[9] train-mlogloss:0.928634 val-mlogloss:0.934332
[10] train-mlogloss:0.915499 val-mlogloss:0.921662
[11] train-mlogloss:0.902885 val-mlogloss:0.909531
[12] train-mlogloss:0.890587 val-mlogloss:0.897704
[13] train-mlogloss:0.879018 val-mlogloss:0.886706
[14] train-mlogloss:0.867827 val-mlogloss:0.876054
[15] train-mlogloss:0.857247 val-mlogloss:0.865963
[16] train-mlogloss:0.847002 val-mlogloss:0.856158
[17] train-mlogloss:0.837087 val-mlogloss:0.846743
[18] train-mlogloss:0.827615 val-mlogloss:0.837644
[19] train-mlogloss:0.818583 val-mlogloss:0.82898
[20] train-mlogloss:0.809766 val-mlogloss:0.820555
[21] train-mlogloss:0.801199 val-mlogloss:0.812395
[22] train-mlogloss:0.79294 val-mlogloss:0.804595
[23] train-mlogloss:0.785002 val-mlogloss:0.797013
[24] train-mlogloss:0.777443 val-mlogloss:0.789759
[25] train-mlogloss:0.770085 val-mlogloss:0.782812
[26] train-mlogloss:0.762869 val-mlogloss:0.776079
[27] train-mlogloss:0.756035 val-mlogloss:0.769586
[28] train-mlogloss:0.749341 val-mlogloss:0.763342
[29] train-mlogloss:0.742882 val-mlogloss:0.757373
[30] train-mlogloss:0.736703 val-mlogloss:0.751577
[31] train-mlogloss:0.730713 val-mlogloss:0.74597
[32] train-mlogloss:0.724874 val-mlogloss:0.740554
[33] train-mlogloss:0.719264 val-mlogloss:0.735261
[34] train-mlogloss:0.713798 val-mlogloss:0.730179
[35] train-mlogloss:0.708494 val-mlogloss:0.72532
[36] train-mlogloss:0.703366 val-mlogloss:0.720577
[37] train-mlogloss:0.698472 val-mlogloss:0.716033
[38] train-mlogloss:0.693772 val-mlogloss:0.711691
[39] train-mlogloss:0.689239 val-mlogloss:0.707555
[40] train-mlogloss:0.684838 val-mlogloss:0.703506
[41] train-mlogloss:0.680593 val-mlogloss:0.699603
[42] train-mlogloss:0.676334 val-mlogloss:0.695704
[43] train-mlogloss:0.672309 val-mlogloss:0.692011
[44] train-mlogloss:0.668327 val-mlogloss:0.688428
[45] train-mlogloss:0.664522 val-mlogloss:0.684887
[46] train-mlogloss:0.660933 val-mlogloss:0.681643
[47] train-mlogloss:0.657279 val-mlogloss:0.678362
[48] train-mlogloss:0.653796 val-mlogloss:0.675239
[49] train-mlogloss:0.650425 val-mlogloss:0.672188
[50] train-mlogloss:0.647112 val-mlogloss:0.669102
[51] train-mlogloss:0.643936 val-mlogloss:0.666283
[52] train-mlogloss:0.640879 val-mlogloss:0.663544
[53] train-mlogloss:0.637921 val-mlogloss:0.660922
[54] train-mlogloss:0.634942 val-mlogloss:0.658315
[55] train-mlogloss:0.632088 val-mlogloss:0.655759
[56] train-mlogloss:0.629209 val-mlogloss:0.653304
[57] train-mlogloss:0.626533 val-mlogloss:0.650923
[58] train-mlogloss:0.623935 val-mlogloss:0.648687
[59] train-mlogloss:0.621426 val-mlogloss:0.646462
[60] train-mlogloss:0.618903 val-mlogloss:0.644235
[61] train-mlogloss:0.616492 val-mlogloss:0.642063
[62] train-mlogloss:0.61408 val-mlogloss:0.639956
[63] train-mlogloss:0.611771 val-mlogloss:0.637903
[64] train-mlogloss:0.60947 val-mlogloss:0.635978
[65] train-mlogloss:0.607336 val-mlogloss:0.63416
[66] train-mlogloss:0.605187 val-mlogloss:0.632312
[67] train-mlogloss:0.603116 val-mlogloss:0.630568
[68] train-mlogloss:0.60112 val-mlogloss:0.628791
[69] train-mlogloss:0.599165 val-mlogloss:0.627139
[70] train-mlogloss:0.597214 val-mlogloss:0.62547
[71] train-mlogloss:0.595304 val-mlogloss:0.623908
[72] train-mlogloss:0.593517 val-mlogloss:0.622375
[73] train-mlogloss:0.591808 val-mlogloss:0.620976
[74] train-mlogloss:0.590092 val-mlogloss:0.61953
[75] train-mlogloss:0.588488 val-mlogloss:0.618189
[76] train-mlogloss:0.586666 val-mlogloss:0.616749
[77] train-mlogloss:0.584939 val-mlogloss:0.615338
[78] train-mlogloss:0.58323 val-mlogloss:0.613948
[79] train-mlogloss:0.581509 val-mlogloss:0.612552
[80] train-mlogloss:0.579989 val-mlogloss:0.611326
[81] train-mlogloss:0.578431 val-mlogloss:0.610125
[82] train-mlogloss:0.576922 val-mlogloss:0.60898
[83] train-mlogloss:0.575312 val-mlogloss:0.607687
[84] train-mlogloss:0.573863 val-mlogloss:0.606527
[85] train-mlogloss:0.572426 val-mlogloss:0.605464
[86] train-mlogloss:0.571034 val-mlogloss:0.604398
[87] train-mlogloss:0.569715 val-mlogloss:0.603359
[88] train-mlogloss:0.568427 val-mlogloss:0.602321
[89] train-mlogloss:0.567089 val-mlogloss:0.601322
[90] train-mlogloss:0.565838 val-mlogloss:0.600377
[91] train-mlogloss:0.564603 val-mlogloss:0.599448
[92] train-mlogloss:0.563468 val-mlogloss:0.598632
[93] train-mlogloss:0.562321 val-mlogloss:0.597795
[94] train-mlogloss:0.561166 val-mlogloss:0.596895
[95] train-mlogloss:0.55994 val-mlogloss:0.59598
[96] train-mlogloss:0.558748 val-mlogloss:0.595017
[97] train-mlogloss:0.557595 val-mlogloss:0.594185
[98] train-mlogloss:0.556575 val-mlogloss:0.593453
[99] train-mlogloss:0.555548 val-mlogloss:0.592668
[100] train-mlogloss:0.554452 val-mlogloss:0.591822
[101] train-mlogloss:0.553388 val-mlogloss:0.591059
[102] train-mlogloss:0.552379 val-mlogloss:0.590298
[103] train-mlogloss:0.551296 val-mlogloss:0.589535
[104] train-mlogloss:0.550356 val-mlogloss:0.588745
[105] train-mlogloss:0.549275 val-mlogloss:0.587961
[106] train-mlogloss:0.548295 val-mlogloss:0.587239
[107] train-mlogloss:0.547351 val-mlogloss:0.586562
[108] train-mlogloss:0.546472 val-mlogloss:0.585977
[109] train-mlogloss:0.545532 val-mlogloss:0.585268
[110] train-mlogloss:0.544619 val-mlogloss:0.584629
[111] train-mlogloss:0.543789 val-mlogloss:0.58401
[112] train-mlogloss:0.542922 val-mlogloss:0.583409
[113] train-mlogloss:0.542089 val-mlogloss:0.582749
[114] train-mlogloss:0.541285 val-mlogloss:0.582233
[115] train-mlogloss:0.540366 val-mlogloss:0.58157
[116] train-mlogloss:0.539487 val-mlogloss:0.581026
[117] train-mlogloss:0.538648 val-mlogloss:0.580401
[118] train-mlogloss:0.537875 val-mlogloss:0.579826
[119] train-mlogloss:0.537077 val-mlogloss:0.579299
[120] train-mlogloss:0.536234 val-mlogloss:0.578751
[121] train-mlogloss:0.535424 val-mlogloss:0.578289
[122] train-mlogloss:0.534755 val-mlogloss:0.577885
[123] train-mlogloss:0.533977 val-mlogloss:0.577328
[124] train-mlogloss:0.533203 val-mlogloss:0.57689
[125] train-mlogloss:0.532455 val-mlogloss:0.576445
[126] train-mlogloss:0.531631 val-mlogloss:0.575928
[127] train-mlogloss:0.530873 val-mlogloss:0.575459
[128] train-mlogloss:0.530228 val-mlogloss:0.575039
[129] train-mlogloss:0.529579 val-mlogloss:0.57462
[130] train-mlogloss:0.528915 val-mlogloss:0.574171
[131] train-mlogloss:0.528234 val-mlogloss:0.57379
[132] train-mlogloss:0.527525 val-mlogloss:0.573392
[133] train-mlogloss:0.52684 val-mlogloss:0.57292
[134] train-mlogloss:0.52614 val-mlogloss:0.572507
[135] train-mlogloss:0.525406 val-mlogloss:0.572068
[136] train-mlogloss:0.524808 val-mlogloss:0.571702
[137] train-mlogloss:0.524142 val-mlogloss:0.571292
[138] train-mlogloss:0.523411 val-mlogloss:0.570863
[139] train-mlogloss:0.522725 val-mlogloss:0.570455
[140] train-mlogloss:0.522151 val-mlogloss:0.570082
[141] train-mlogloss:0.521466 val-mlogloss:0.569587
[142] train-mlogloss:0.520799 val-mlogloss:0.569195
[143] train-mlogloss:0.520182 val-mlogloss:0.568809
[144] train-mlogloss:0.519479 val-mlogloss:0.568464
[145] train-mlogloss:0.518863 val-mlogloss:0.568147
[146] train-mlogloss:0.518224 val-mlogloss:0.567792
[147] train-mlogloss:0.51762 val-mlogloss:0.567481
[148] train-mlogloss:0.517022 val-mlogloss:0.567087
[149] train-mlogloss:0.516461 val-mlogloss:0.566718
[150] train-mlogloss:0.515825 val-mlogloss:0.566333
[151] train-mlogloss:0.515273 val-mlogloss:0.565989
[152] train-mlogloss:0.514678 val-mlogloss:0.565621
[153] train-mlogloss:0.514159 val-mlogloss:0.565331
[154] train-mlogloss:0.513648 val-mlogloss:0.565005
[155] train-mlogloss:0.513074 val-mlogloss:0.56471
[156] train-mlogloss:0.512547 val-mlogloss:0.564468
[157] train-mlogloss:0.511923 val-mlogloss:0.564102
[158] train-mlogloss:0.511411 val-mlogloss:0.563827
[159] train-mlogloss:0.510778 val-mlogloss:0.563483
[160] train-mlogloss:0.510313 val-mlogloss:0.563274
[161] train-mlogloss:0.509711 val-mlogloss:0.56301
[162] train-mlogloss:0.50914 val-mlogloss:0.562714
[163] train-mlogloss:0.508492 val-mlogloss:0.562426
[164] train-mlogloss:0.507943 val-mlogloss:0.562215
[165] train-mlogloss:0.507426 val-mlogloss:0.56191
[166] train-mlogloss:0.506847 val-mlogloss:0.561624
[167] train-mlogloss:0.506326 val-mlogloss:0.561331
[168] train-mlogloss:0.505887 val-mlogloss:0.561086
[169] train-mlogloss:0.505338 val-mlogloss:0.560864
[170] train-mlogloss:0.504877 val-mlogloss:0.560647
[171] train-mlogloss:0.504194 val-mlogloss:0.560321
[172] train-mlogloss:0.503824 val-mlogloss:0.560112
[173] train-mlogloss:0.503385 val-mlogloss:0.559882
[174] train-mlogloss:0.502722 val-mlogloss:0.559504
[175] train-mlogloss:0.502224 val-mlogloss:0.559311
[176] train-mlogloss:0.501795 val-mlogloss:0.559084
[177] train-mlogloss:0.50141 val-mlogloss:0.558864
[178] train-mlogloss:0.500948 val-mlogloss:0.558714
[179] train-mlogloss:0.50043 val-mlogloss:0.558479
[180] train-mlogloss:0.499915 val-mlogloss:0.558233
[181] train-mlogloss:0.499412 val-mlogloss:0.557988
[182] train-mlogloss:0.498959 val-mlogloss:0.55773
[183] train-mlogloss:0.498605 val-mlogloss:0.557536
[184] train-mlogloss:0.498041 val-mlogloss:0.557348
[185] train-mlogloss:0.497586 val-mlogloss:0.557168
[186] train-mlogloss:0.497112 val-mlogloss:0.556978
[187] train-mlogloss:0.496679 val-mlogloss:0.556789
[188] train-mlogloss:0.496312 val-mlogloss:0.556634
[189] train-mlogloss:0.495836 val-mlogloss:0.556458
[190] train-mlogloss:0.495502 val-mlogloss:0.55629
[191] train-mlogloss:0.495037 val-mlogloss:0.55608
[192] train-mlogloss:0.494555 val-mlogloss:0.555862
[193] train-mlogloss:0.494057 val-mlogloss:0.555644
[194] train-mlogloss:0.493559 val-mlogloss:0.555467
[195] train-mlogloss:0.493131 val-mlogloss:0.555313
[196] train-mlogloss:0.492775 val-mlogloss:0.555126
[197] train-mlogloss:0.492274 val-mlogloss:0.554935
[198] train-mlogloss:0.491772 val-mlogloss:0.554739
[199] train-mlogloss:0.4913 val-mlogloss:0.554586
[200] train-mlogloss:0.491014 val-mlogloss:0.554454
[201] train-mlogloss:0.490522 val-mlogloss:0.554262
[202] train-mlogloss:0.490031 val-mlogloss:0.554088
[203] train-mlogloss:0.489514 val-mlogloss:0.553818
[204] train-mlogloss:0.488999 val-mlogloss:0.553673
[205] train-mlogloss:0.488622 val-mlogloss:0.553532
[206] train-mlogloss:0.488172 val-mlogloss:0.553354
[207] train-mlogloss:0.487777 val-mlogloss:0.553213
[208] train-mlogloss:0.487338 val-mlogloss:0.553077
[209] train-mlogloss:0.486901 val-mlogloss:0.552915
[210] train-mlogloss:0.486502 val-mlogloss:0.552746
[211] train-mlogloss:0.486131 val-mlogloss:0.552577
[212] train-mlogloss:0.485708 val-mlogloss:0.552356
[213] train-mlogloss:0.485334 val-mlogloss:0.552202
[214] train-mlogloss:0.484887 val-mlogloss:0.552055
[215] train-mlogloss:0.484484 val-mlogloss:0.551843
[216] train-mlogloss:0.484085 val-mlogloss:0.551672
[217] train-mlogloss:0.483713 val-mlogloss:0.551558
[218] train-mlogloss:0.483266 val-mlogloss:0.551436
[219] train-mlogloss:0.482904 val-mlogloss:0.55128
[220] train-mlogloss:0.48248 val-mlogloss:0.551123
[221] train-mlogloss:0.482052 val-mlogloss:0.55102
[222] train-mlogloss:0.481681 val-mlogloss:0.550838
[223] train-mlogloss:0.481307 val-mlogloss:0.550671
[224] train-mlogloss:0.480922 val-mlogloss:0.550494
[225] train-mlogloss:0.480556 val-mlogloss:0.550353
[226] train-mlogloss:0.48024 val-mlogloss:0.550225
[227] train-mlogloss:0.479834 val-mlogloss:0.550061
[228] train-mlogloss:0.479423 val-mlogloss:0.549881
[229] train-mlogloss:0.4791 val-mlogloss:0.549767
[230] train-mlogloss:0.478697 val-mlogloss:0.549616
[231] train-mlogloss:0.478321 val-mlogloss:0.549483
[232] train-mlogloss:0.477951 val-mlogloss:0.549339
[233] train-mlogloss:0.477625 val-mlogloss:0.549255
[234] train-mlogloss:0.477278 val-mlogloss:0.549154
[235] train-mlogloss:0.476827 val-mlogloss:0.548966
[236] train-mlogloss:0.476556 val-mlogloss:0.548858
[237] train-mlogloss:0.4761 val-mlogloss:0.548707
[238] train-mlogloss:0.475678 val-mlogloss:0.548514
[239] train-mlogloss:0.475256 val-mlogloss:0.54832
[240] train-mlogloss:0.474782 val-mlogloss:0.548096
[241] train-mlogloss:0.474522 val-mlogloss:0.547993
[242] train-mlogloss:0.474114 val-mlogloss:0.547796
[243] train-mlogloss:0.473821 val-mlogloss:0.547709
[244] train-mlogloss:0.473439 val-mlogloss:0.547635
[245] train-mlogloss:0.473144 val-mlogloss:0.547539
[246] train-mlogloss:0.472876 val-mlogloss:0.547442
[247] train-mlogloss:0.472438 val-mlogloss:0.547291
[248] train-mlogloss:0.47195 val-mlogloss:0.547194
[249] train-mlogloss:0.471682 val-mlogloss:0.547138
[250] train-mlogloss:0.471235 val-mlogloss:0.547013
[251] train-mlogloss:0.470924 val-mlogloss:0.546895
[252] train-mlogloss:0.470545 val-mlogloss:0.546813
[253] train-mlogloss:0.47014 val-mlogloss:0.546683
[254] train-mlogloss:0.46988 val-mlogloss:0.546611
[255] train-mlogloss:0.469568 val-mlogloss:0.546468
[256] train-mlogloss:0.469176 val-mlogloss:0.546273
[257] train-mlogloss:0.468829 val-mlogloss:0.546137
[258] train-mlogloss:0.468386 val-mlogloss:0.545996
[259] train-mlogloss:0.468126 val-mlogloss:0.545901
[260] train-mlogloss:0.467795 val-mlogloss:0.545771
[261] train-mlogloss:0.467389 val-mlogloss:0.545609
[262] train-mlogloss:0.467086 val-mlogloss:0.545525
[263] train-mlogloss:0.466772 val-mlogloss:0.54541
[264] train-mlogloss:0.466436 val-mlogloss:0.545337
[265] train-mlogloss:0.466152 val-mlogloss:0.54519
[266] train-mlogloss:0.465735 val-mlogloss:0.545104
[267] train-mlogloss:0.465488 val-mlogloss:0.545013
[268] train-mlogloss:0.46517 val-mlogloss:0.544908
[269] train-mlogloss:0.464854 val-mlogloss:0.54488
[270] train-mlogloss:0.464461 val-mlogloss:0.544777
[271] train-mlogloss:0.464137 val-mlogloss:0.544708
[272] train-mlogloss:0.463796 val-mlogloss:0.544596
[273] train-mlogloss:0.463516 val-mlogloss:0.544477
[274] train-mlogloss:0.463221 val-mlogloss:0.544369
[275] train-mlogloss:0.462946 val-mlogloss:0.544281
[276] train-mlogloss:0.462601 val-mlogloss:0.544176
[277] train-mlogloss:0.462173 val-mlogloss:0.544094
[278] train-mlogloss:0.461923 val-mlogloss:0.543989
[279] train-mlogloss:0.461622 val-mlogloss:0.543913
[280] train-mlogloss:0.461345 val-mlogloss:0.543853
[281] train-mlogloss:0.460988 val-mlogloss:0.543743
[282] train-mlogloss:0.460654 val-mlogloss:0.543645
[283] train-mlogloss:0.460277 val-mlogloss:0.543504
[284] train-mlogloss:0.459892 val-mlogloss:0.54337
[285] train-mlogloss:0.459585 val-mlogloss:0.543276
[286] train-mlogloss:0.459328 val-mlogloss:0.543235
[287] train-mlogloss:0.459035 val-mlogloss:0.543095
[288] train-mlogloss:0.458692 val-mlogloss:0.543007
[289] train-mlogloss:0.458432 val-mlogloss:0.542939
[290] train-mlogloss:0.458097 val-mlogloss:0.542896
[291] train-mlogloss:0.457806 val-mlogloss:0.542807
[292] train-mlogloss:0.457478 val-mlogloss:0.542716
[293] train-mlogloss:0.457168 val-mlogloss:0.542649
[294] train-mlogloss:0.456858 val-mlogloss:0.542595
[295] train-mlogloss:0.456553 val-mlogloss:0.542535
[296] train-mlogloss:0.456295 val-mlogloss:0.542484
[297] train-mlogloss:0.455885 val-mlogloss:0.542342
[298] train-mlogloss:0.455654 val-mlogloss:0.54229
[299] train-mlogloss:0.455342 val-mlogloss:0.54222
[300] train-mlogloss:0.455092 val-mlogloss:0.54214
[301] train-mlogloss:0.454784 val-mlogloss:0.542078
[302] train-mlogloss:0.454476 val-mlogloss:0.541947
[303] train-mlogloss:0.454132 val-mlogloss:0.541854
[304] train-mlogloss:0.453864 val-mlogloss:0.541802
[305] train-mlogloss:0.453599 val-mlogloss:0.541736
[306] train-mlogloss:0.453407 val-mlogloss:0.541658
[307] train-mlogloss:0.453079 val-mlogloss:0.541568
[308] train-mlogloss:0.452753 val-mlogloss:0.541502
[309] train-mlogloss:0.452502 val-mlogloss:0.541462
[310] train-mlogloss:0.452194 val-mlogloss:0.54137
[311] train-mlogloss:0.451918 val-mlogloss:0.541327
[312] train-mlogloss:0.451607 val-mlogloss:0.541245
[313] train-mlogloss:0.451206 val-mlogloss:0.541089
[314] train-mlogloss:0.45084 val-mlogloss:0.540933
[315] train-mlogloss:0.450559 val-mlogloss:0.540909
[316] train-mlogloss:0.450279 val-mlogloss:0.540862
[317] train-mlogloss:0.449943 val-mlogloss:0.540784
[318] train-mlogloss:0.449721 val-mlogloss:0.540718
[319] train-mlogloss:0.449463 val-mlogloss:0.540698
[320] train-mlogloss:0.449176 val-mlogloss:0.540607
[321] train-mlogloss:0.448908 val-mlogloss:0.54055
[322] train-mlogloss:0.448598 val-mlogloss:0.540439
[323] train-mlogloss:0.448294 val-mlogloss:0.540319
[324] train-mlogloss:0.448099 val-mlogloss:0.540277
[325] train-mlogloss:0.447796 val-mlogloss:0.540241
[326] train-mlogloss:0.447542 val-mlogloss:0.540204
[327] train-mlogloss:0.447196 val-mlogloss:0.540093
[328] train-mlogloss:0.446966 val-mlogloss:0.540052
[329] train-mlogloss:0.446717 val-mlogloss:0.53999
[330] train-mlogloss:0.44639 val-mlogloss:0.539948
[331] train-mlogloss:0.446073 val-mlogloss:0.539887
[332] train-mlogloss:0.445735 val-mlogloss:0.539823
[333] train-mlogloss:0.445437 val-mlogloss:0.539733
[334] train-mlogloss:0.445104 val-mlogloss:0.539655
[335] train-mlogloss:0.444858 val-mlogloss:0.539641
[336] train-mlogloss:0.444542 val-mlogloss:0.539615
[337] train-mlogloss:0.44428 val-mlogloss:0.539558
[338] train-mlogloss:0.444003 val-mlogloss:0.53947
[339] train-mlogloss:0.443807 val-mlogloss:0.539469
[340] train-mlogloss:0.443548 val-mlogloss:0.539438
[341] train-mlogloss:0.443184 val-mlogloss:0.539363
[342] train-mlogloss:0.442864 val-mlogloss:0.539264
[343] train-mlogloss:0.442622 val-mlogloss:0.539177
[344] train-mlogloss:0.442296 val-mlogloss:0.539098
[345] train-mlogloss:0.441959 val-mlogloss:0.539005
[346] train-mlogloss:0.441677 val-mlogloss:0.538953
[347] train-mlogloss:0.44139 val-mlogloss:0.538903
[348] train-mlogloss:0.441151 val-mlogloss:0.538831
[349] train-mlogloss:0.440919 val-mlogloss:0.538796
[350] train-mlogloss:0.440697 val-mlogloss:0.53872
[351] train-mlogloss:0.440466 val-mlogloss:0.538658
[352] train-mlogloss:0.440208 val-mlogloss:0.538613
[353] train-mlogloss:0.439925 val-mlogloss:0.538599
[354] train-mlogloss:0.43968 val-mlogloss:0.53855
[355] train-mlogloss:0.439347 val-mlogloss:0.538438
[356] train-mlogloss:0.439114 val-mlogloss:0.538386
[357] train-mlogloss:0.438864 val-mlogloss:0.538345
[358] train-mlogloss:0.438596 val-mlogloss:0.538306
[359] train-mlogloss:0.438366 val-mlogloss:0.538291
[360] train-mlogloss:0.438161 val-mlogloss:0.538264
[361] train-mlogloss:0.437841 val-mlogloss:0.53822
[362] train-mlogloss:0.437565 val-mlogloss:0.538169
[363] train-mlogloss:0.43734 val-mlogloss:0.538089
[364] train-mlogloss:0.43705 val-mlogloss:0.538017
[365] train-mlogloss:0.436791 val-mlogloss:0.537943
[366] train-mlogloss:0.436578 val-mlogloss:0.537864
[367] train-mlogloss:0.436303 val-mlogloss:0.537836
[368] train-mlogloss:0.436121 val-mlogloss:0.537793
[369] train-mlogloss:0.435828 val-mlogloss:0.537731
[370] train-mlogloss:0.435571 val-mlogloss:0.537667
[371] train-mlogloss:0.43533 val-mlogloss:0.537633
[372] train-mlogloss:0.434985 val-mlogloss:0.537562
[373] train-mlogloss:0.434739 val-mlogloss:0.537511
[374] train-mlogloss:0.434478 val-mlogloss:0.537465
[375] train-mlogloss:0.434166 val-mlogloss:0.537389
[376] train-mlogloss:0.433929 val-mlogloss:0.537319
[377] train-mlogloss:0.433727 val-mlogloss:0.537248
[378] train-mlogloss:0.433443 val-mlogloss:0.53719
[379] train-mlogloss:0.433186 val-mlogloss:0.537176
[380] train-mlogloss:0.432813 val-mlogloss:0.537128
[381] train-mlogloss:0.432584 val-mlogloss:0.537093
[382] train-mlogloss:0.432286 val-mlogloss:0.537075
[383] train-mlogloss:0.432027 val-mlogloss:0.536999
[384] train-mlogloss:0.431816 val-mlogloss:0.536964
[385] train-mlogloss:0.431604 val-mlogloss:0.536911
[386] train-mlogloss:0.431403 val-mlogloss:0.536867
[387] train-mlogloss:0.431069 val-mlogloss:0.536812
[388] train-mlogloss:0.430863 val-mlogloss:0.536729
[389] train-mlogloss:0.430614 val-mlogloss:0.536674
[390] train-mlogloss:0.43032 val-mlogloss:0.536634
[391] train-mlogloss:0.430117 val-mlogloss:0.536609
[392] train-mlogloss:0.429852 val-mlogloss:0.536561
[393] train-mlogloss:0.429607 val-mlogloss:0.536506
[394] train-mlogloss:0.429291 val-mlogloss:0.536399
[395] train-mlogloss:0.429005 val-mlogloss:0.536394
[396] train-mlogloss:0.428724 val-mlogloss:0.53637
[397] train-mlogloss:0.428515 val-mlogloss:0.536372
[398] train-mlogloss:0.428254 val-mlogloss:0.536329
[399] train-mlogloss:0.428066 val-mlogloss:0.536281
[400] train-mlogloss:0.427827 val-mlogloss:0.536236
[401] train-mlogloss:0.42757 val-mlogloss:0.536157
[402] train-mlogloss:0.427341 val-mlogloss:0.536099
[403] train-mlogloss:0.427075 val-mlogloss:0.536075
[404] train-mlogloss:0.426752 val-mlogloss:0.536009
[405] train-mlogloss:0.426525 val-mlogloss:0.535993
[406] train-mlogloss:0.426295 val-mlogloss:0.535983
[407] train-mlogloss:0.426062 val-mlogloss:0.535922
[408] train-mlogloss:0.425893 val-mlogloss:0.535912
[409] train-mlogloss:0.4257 val-mlogloss:0.535845
[410] train-mlogloss:0.425498 val-mlogloss:0.5358
[411] train-mlogloss:0.425284 val-mlogloss:0.535748
[412] train-mlogloss:0.4251 val-mlogloss:0.535748
[413] train-mlogloss:0.424849 val-mlogloss:0.535719
[414] train-mlogloss:0.424618 val-mlogloss:0.535705
[415] train-mlogloss:0.424405 val-mlogloss:0.535657
[416] train-mlogloss:0.424185 val-mlogloss:0.535595
[417] train-mlogloss:0.423857 val-mlogloss:0.53555
[418] train-mlogloss:0.423503 val-mlogloss:0.535484
[419] train-mlogloss:0.423306 val-mlogloss:0.535468
[420] train-mlogloss:0.423028 val-mlogloss:0.535415
[421] train-mlogloss:0.422753 val-mlogloss:0.535397
[422] train-mlogloss:0.422489 val-mlogloss:0.535345
[423] train-mlogloss:0.422228 val-mlogloss:0.535344
[424] train-mlogloss:0.421967 val-mlogloss:0.535285
[425] train-mlogloss:0.421725 val-mlogloss:0.535275
[426] train-mlogloss:0.421438 val-mlogloss:0.535273
[427] train-mlogloss:0.421157 val-mlogloss:0.535245
[428] train-mlogloss:0.420903 val-mlogloss:0.535241
[429] train-mlogloss:0.420624 val-mlogloss:0.535182
[430] train-mlogloss:0.420317 val-mlogloss:0.535113
[431] train-mlogloss:0.420126 val-mlogloss:0.535083
[432] train-mlogloss:0.419974 val-mlogloss:0.535054
[433] train-mlogloss:0.419758 val-mlogloss:0.535035
[434] train-mlogloss:0.419531 val-mlogloss:0.534984
[435] train-mlogloss:0.419342 val-mlogloss:0.53494
[436] train-mlogloss:0.419105 val-mlogloss:0.534909
[437] train-mlogloss:0.418856 val-mlogloss:0.534848
[438] train-mlogloss:0.418653 val-mlogloss:0.534776
[439] train-mlogloss:0.418391 val-mlogloss:0.534749
[440] train-mlogloss:0.418147 val-mlogloss:0.534706
[441] train-mlogloss:0.418 val-mlogloss:0.534683
[442] train-mlogloss:0.41779 val-mlogloss:0.534652
[443] train-mlogloss:0.417577 val-mlogloss:0.534672
[444] train-mlogloss:0.417349 val-mlogloss:0.53463
[445] train-mlogloss:0.41707 val-mlogloss:0.53459
[446] train-mlogloss:0.416894 val-mlogloss:0.534562
[447] train-mlogloss:0.416622 val-mlogloss:0.534546
[448] train-mlogloss:0.41633 val-mlogloss:0.534522
[449] train-mlogloss:0.416081 val-mlogloss:0.534446
[450] train-mlogloss:0.41583 val-mlogloss:0.534364
[451] train-mlogloss:0.415613 val-mlogloss:0.53435
[452] train-mlogloss:0.4154 val-mlogloss:0.534326
[453] train-mlogloss:0.415168 val-mlogloss:0.534286
[454] train-mlogloss:0.414956 val-mlogloss:0.534221
[455] train-mlogloss:0.414724 val-mlogloss:0.534188
[456] train-mlogloss:0.414436 val-mlogloss:0.534123
[457] train-mlogloss:0.414227 val-mlogloss:0.534082
[458] train-mlogloss:0.414065 val-mlogloss:0.534052
[459] train-mlogloss:0.413851 val-mlogloss:0.534033
[460] train-mlogloss:0.413577 val-mlogloss:0.533996
[461] train-mlogloss:0.413424 val-mlogloss:0.534
[462] train-mlogloss:0.413143 val-mlogloss:0.533927
[463] train-mlogloss:0.41288 val-mlogloss:0.533921
[464] train-mlogloss:0.412643 val-mlogloss:0.533874
[465] train-mlogloss:0.412391 val-mlogloss:0.533789
[466] train-mlogloss:0.412119 val-mlogloss:0.533753
[467] train-mlogloss:0.411828 val-mlogloss:0.533719
[468] train-mlogloss:0.411632 val-mlogloss:0.533683
[469] train-mlogloss:0.411296 val-mlogloss:0.5337
[470] train-mlogloss:0.411049 val-mlogloss:0.533658
[471] train-mlogloss:0.410871 val-mlogloss:0.533623
[472] train-mlogloss:0.410633 val-mlogloss:0.533589
[473] train-mlogloss:0.410497 val-mlogloss:0.533572
[474] train-mlogloss:0.410275 val-mlogloss:0.533513
[475] train-mlogloss:0.409982 val-mlogloss:0.53348
[476] train-mlogloss:0.409727 val-mlogloss:0.533397
[477] train-mlogloss:0.409503 val-mlogloss:0.533378
[478] train-mlogloss:0.409309 val-mlogloss:0.533349
[479] train-mlogloss:0.40913 val-mlogloss:0.533335
[480] train-mlogloss:0.40888 val-mlogloss:0.533341
[481] train-mlogloss:0.408617 val-mlogloss:0.533373
[482] train-mlogloss:0.40845 val-mlogloss:0.533363
[483] train-mlogloss:0.408209 val-mlogloss:0.53335
[484] train-mlogloss:0.407977 val-mlogloss:0.533313
[485] train-mlogloss:0.407754 val-mlogloss:0.53326
[486] train-mlogloss:0.40757 val-mlogloss:0.533211
[487] train-mlogloss:0.407308 val-mlogloss:0.533185
[488] train-mlogloss:0.407083 val-mlogloss:0.533156
[489] train-mlogloss:0.406826 val-mlogloss:0.533116
[490] train-mlogloss:0.406605 val-mlogloss:0.53306
[491] train-mlogloss:0.406418 val-mlogloss:0.533
[492] train-mlogloss:0.406228 val-mlogloss:0.532974
[493] train-mlogloss:0.405909 val-mlogloss:0.532935
[494] train-mlogloss:0.405717 val-mlogloss:0.532945
[495] train-mlogloss:0.405475 val-mlogloss:0.532924
[496] train-mlogloss:0.405227 val-mlogloss:0.532901
[497] train-mlogloss:0.405005 val-mlogloss:0.532863
[498] train-mlogloss:0.404825 val-mlogloss:0.532839
[499] train-mlogloss:0.404611 val-mlogloss:0.532807
[500] train-mlogloss:0.404347 val-mlogloss:0.532769
[501] train-mlogloss:0.404165 val-mlogloss:0.532732
[502] train-mlogloss:0.403995 val-mlogloss:0.532718
[503] train-mlogloss:0.40374 val-mlogloss:0.532692
[504] train-mlogloss:0.403487 val-mlogloss:0.532657
[505] train-mlogloss:0.403253 val-mlogloss:0.532668
[506] train-mlogloss:0.403024 val-mlogloss:0.532604
[507] train-mlogloss:0.402878 val-mlogloss:0.53258
[508] train-mlogloss:0.402583 val-mlogloss:0.532574
[509] train-mlogloss:0.402391 val-mlogloss:0.532562
[510] train-mlogloss:0.402123 val-mlogloss:0.532543
[511] train-mlogloss:0.401848 val-mlogloss:0.532544
[512] train-mlogloss:0.401592 val-mlogloss:0.532547
[513] train-mlogloss:0.401377 val-mlogloss:0.532523
[514] train-mlogloss:0.401149 val-mlogloss:0.532449
[515] train-mlogloss:0.400961 val-mlogloss:0.532424
[516] train-mlogloss:0.40074 val-mlogloss:0.53241
[517] train-mlogloss:0.400562 val-mlogloss:0.532416
[518] train-mlogloss:0.400317 val-mlogloss:0.532407
[519] train-mlogloss:0.400131 val-mlogloss:0.532381
[520] train-mlogloss:0.399914 val-mlogloss:0.532332
[521] train-mlogloss:0.399687 val-mlogloss:0.532339
[522] train-mlogloss:0.39945 val-mlogloss:0.532308
[523] train-mlogloss:0.399192 val-mlogloss:0.532268
[524] train-mlogloss:0.399026 val-mlogloss:0.532239
[525] train-mlogloss:0.398802 val-mlogloss:0.532231
[526] train-mlogloss:0.398523 val-mlogloss:0.532236
[527] train-mlogloss:0.398296 val-mlogloss:0.532219
[528] train-mlogloss:0.398083 val-mlogloss:0.532229
[529] train-mlogloss:0.397857 val-mlogloss:0.532183
[530] train-mlogloss:0.397652 val-mlogloss:0.532148
[531] train-mlogloss:0.397416 val-mlogloss:0.532176
[532] train-mlogloss:0.397274 val-mlogloss:0.532153
[533] train-mlogloss:0.397077 val-mlogloss:0.532155
[534] train-mlogloss:0.396854 val-mlogloss:0.532126
[535] train-mlogloss:0.396572 val-mlogloss:0.532087
[536] train-mlogloss:0.39641 val-mlogloss:0.532052
[537] train-mlogloss:0.396096 val-mlogloss:0.532069
[538] train-mlogloss:0.395866 val-mlogloss:0.532074
[539] train-mlogloss:0.395637 val-mlogloss:0.532056
[540] train-mlogloss:0.395403 val-mlogloss:0.532004
[541] train-mlogloss:0.3953 val-mlogloss:0.531977
[542] train-mlogloss:0.395063 val-mlogloss:0.531915
[543] train-mlogloss:0.394895 val-mlogloss:0.531895
[544] train-mlogloss:0.394679 val-mlogloss:0.531843
[545] train-mlogloss:0.394483 val-mlogloss:0.531867
[546] train-mlogloss:0.394297 val-mlogloss:0.531874
[547] train-mlogloss:0.394047 val-mlogloss:0.531825
[548] train-mlogloss:0.393802 val-mlogloss:0.531789
[549] train-mlogloss:0.393579 val-mlogloss:0.531719
[550] train-mlogloss:0.39329 val-mlogloss:0.531724
[551] train-mlogloss:0.393083 val-mlogloss:0.531698
[552] train-mlogloss:0.392835 val-mlogloss:0.53163
[553] train-mlogloss:0.392673 val-mlogloss:0.531625
[554] train-mlogloss:0.392466 val-mlogloss:0.531594
[555] train-mlogloss:0.392301 val-mlogloss:0.531558
[556] train-mlogloss:0.392091 val-mlogloss:0.531513
[557] train-mlogloss:0.391933 val-mlogloss:0.531518
[558] train-mlogloss:0.391777 val-mlogloss:0.53148
[559] train-mlogloss:0.391618 val-mlogloss:0.531412
[560] train-mlogloss:0.391424 val-mlogloss:0.531417
[561] train-mlogloss:0.39127 val-mlogloss:0.531427
[562] train-mlogloss:0.391068 val-mlogloss:0.531452
[563] train-mlogloss:0.390874 val-mlogloss:0.531434
[564] train-mlogloss:0.390729 val-mlogloss:0.531412
[565] train-mlogloss:0.390565 val-mlogloss:0.531439
[566] train-mlogloss:0.390371 val-mlogloss:0.531421
[567] train-mlogloss:0.390236 val-mlogloss:0.531409
[568] train-mlogloss:0.390034 val-mlogloss:0.53139
[569] train-mlogloss:0.389774 val-mlogloss:0.531361
[570] train-mlogloss:0.389525 val-mlogloss:0.531359
[571] train-mlogloss:0.389307 val-mlogloss:0.531307
[572] train-mlogloss:0.389181 val-mlogloss:0.531334
[573] train-mlogloss:0.388955 val-mlogloss:0.531288
[574] train-mlogloss:0.388759 val-mlogloss:0.531258
[575] train-mlogloss:0.388543 val-mlogloss:0.531203
[576] train-mlogloss:0.388378 val-mlogloss:0.531185
[577] train-mlogloss:0.388173 val-mlogloss:0.531142
[578] train-mlogloss:0.387999 val-mlogloss:0.531146
[579] train-mlogloss:0.387758 val-mlogloss:0.531154
[580] train-mlogloss:0.387511 val-mlogloss:0.531132
[581] train-mlogloss:0.387299 val-mlogloss:0.531139
[582] train-mlogloss:0.387121 val-mlogloss:0.531144
[583] train-mlogloss:0.386876 val-mlogloss:0.531094
[584] train-mlogloss:0.386697 val-mlogloss:0.531095
[585] train-mlogloss:0.386519 val-mlogloss:0.531069
[586] train-mlogloss:0.386317 val-mlogloss:0.531046
[587] train-mlogloss:0.386084 val-mlogloss:0.531031
[588] train-mlogloss:0.385884 val-mlogloss:0.531043
[589] train-mlogloss:0.385703 val-mlogloss:0.531037
[590] train-mlogloss:0.385488 val-mlogloss:0.531025
[591] train-mlogloss:0.385244 val-mlogloss:0.531008
[592] train-mlogloss:0.385013 val-mlogloss:0.530993
[593] train-mlogloss:0.384836 val-mlogloss:0.530982
[594] train-mlogloss:0.384638 val-mlogloss:0.530971
[595] train-mlogloss:0.384367 val-mlogloss:0.530928
[596] train-mlogloss:0.384174 val-mlogloss:0.530948
[597] train-mlogloss:0.384015 val-mlogloss:0.530927
[598] train-mlogloss:0.383822 val-mlogloss:0.530909
[599] train-mlogloss:0.383666 val-mlogloss:0.530872
[600] train-mlogloss:0.383491 val-mlogloss:0.53084
[601] train-mlogloss:0.383293 val-mlogloss:0.530832
[602] train-mlogloss:0.383134 val-mlogloss:0.530812
[603] train-mlogloss:0.382939 val-mlogloss:0.530774
[604] train-mlogloss:0.382739 val-mlogloss:0.530755
[605] train-mlogloss:0.382487 val-mlogloss:0.530744
[606] train-mlogloss:0.382301 val-mlogloss:0.530733
[607] train-mlogloss:0.382084 val-mlogloss:0.530743
[608] train-mlogloss:0.381908 val-mlogloss:0.53074
[609] train-mlogloss:0.381746 val-mlogloss:0.53071
[610] train-mlogloss:0.381495 val-mlogloss:0.5307
[611] train-mlogloss:0.381332 val-mlogloss:0.530668
[612] train-mlogloss:0.381194 val-mlogloss:0.53066
[613] train-mlogloss:0.38097 val-mlogloss:0.530631
[614] train-mlogloss:0.380795 val-mlogloss:0.53062
[615] train-mlogloss:0.380611 val-mlogloss:0.530594
[616] train-mlogloss:0.380388 val-mlogloss:0.530599
[617] train-mlogloss:0.380182 val-mlogloss:0.530581
[618] train-mlogloss:0.380045 val-mlogloss:0.530577
[619] train-mlogloss:0.379824 val-mlogloss:0.530591
[620] train-mlogloss:0.379641 val-mlogloss:0.530617
[621] train-mlogloss:0.379495 val-mlogloss:0.530638
[622] train-mlogloss:0.379228 val-mlogloss:0.530603
[623] train-mlogloss:0.379061 val-mlogloss:0.530598
[624] train-mlogloss:0.378914 val-mlogloss:0.53055
[625] train-mlogloss:0.378729 val-mlogloss:0.530569
[626] train-mlogloss:0.378481 val-mlogloss:0.53057
[627] train-mlogloss:0.378354 val-mlogloss:0.530556
[628] train-mlogloss:0.378169 val-mlogloss:0.530545
[629] train-mlogloss:0.377951 val-mlogloss:0.530539
[630] train-mlogloss:0.377734 val-mlogloss:0.530483
[631] train-mlogloss:0.377538 val-mlogloss:0.530468
[632] train-mlogloss:0.377263 val-mlogloss:0.530458
[633] train-mlogloss:0.377066 val-mlogloss:0.53047
[634] train-mlogloss:0.376929 val-mlogloss:0.530463
[635] train-mlogloss:0.376689 val-mlogloss:0.530469
[636] train-mlogloss:0.376533 val-mlogloss:0.530459
[637] train-mlogloss:0.376369 val-mlogloss:0.530433
[638] train-mlogloss:0.37621 val-mlogloss:0.530417
[639] train-mlogloss:0.376024 val-mlogloss:0.530419
[640] train-mlogloss:0.375827 val-mlogloss:0.530422
[641] train-mlogloss:0.375651 val-mlogloss:0.530397
[642] train-mlogloss:0.375448 val-mlogloss:0.530358
[643] train-mlogloss:0.375295 val-mlogloss:0.530352
[644] train-mlogloss:0.375146 val-mlogloss:0.530341
[645] train-mlogloss:0.374921 val-mlogloss:0.530315
[646] train-mlogloss:0.374725 val-mlogloss:0.530336
[647] train-mlogloss:0.374505 val-mlogloss:0.530362
[648] train-mlogloss:0.374301 val-mlogloss:0.53036
[649] train-mlogloss:0.374174 val-mlogloss:0.530327
[650] train-mlogloss:0.373984 val-mlogloss:0.530322
[651] train-mlogloss:0.373813 val-mlogloss:0.530311
[652] train-mlogloss:0.373651 val-mlogloss:0.53033
[653] train-mlogloss:0.373483 val-mlogloss:0.530303
[654] train-mlogloss:0.373322 val-mlogloss:0.530308
[655] train-mlogloss:0.373167 val-mlogloss:0.530303
[656] train-mlogloss:0.372985 val-mlogloss:0.530271
[657] train-mlogloss:0.372781 val-mlogloss:0.530266
[658] train-mlogloss:0.372541 val-mlogloss:0.530246
[659] train-mlogloss:0.372371 val-mlogloss:0.530231
[660] train-mlogloss:0.372161 val-mlogloss:0.530189
[661] train-mlogloss:0.371922 val-mlogloss:0.530195
[662] train-mlogloss:0.3717 val-mlogloss:0.530172
[663] train-mlogloss:0.371547 val-mlogloss:0.530153
[664] train-mlogloss:0.37134 val-mlogloss:0.530131
[665] train-mlogloss:0.371198 val-mlogloss:0.530149
[666] train-mlogloss:0.370969 val-mlogloss:0.530102
[667] train-mlogloss:0.370826 val-mlogloss:0.530112
[668] train-mlogloss:0.370588 val-mlogloss:0.530111
[669] train-mlogloss:0.370424 val-mlogloss:0.530105
[670] train-mlogloss:0.370227 val-mlogloss:0.53011
[671] train-mlogloss:0.370045 val-mlogloss:0.530078
[672] train-mlogloss:0.369976 val-mlogloss:0.530092
[673] train-mlogloss:0.369767 val-mlogloss:0.530055
[674] train-mlogloss:0.369582 val-mlogloss:0.530036
[675] train-mlogloss:0.369427 val-mlogloss:0.530048
[676] train-mlogloss:0.369241 val-mlogloss:0.530013
[677] train-mlogloss:0.369055 val-mlogloss:0.530006
[678] train-mlogloss:0.368828 val-mlogloss:0.529989
[679] train-mlogloss:0.368624 val-mlogloss:0.529949
[680] train-mlogloss:0.3685 val-mlogloss:0.529944
[681] train-mlogloss:0.368352 val-mlogloss:0.529901
[682] train-mlogloss:0.368102 val-mlogloss:0.529912
[683] train-mlogloss:0.368001 val-mlogloss:0.529913
[684] train-mlogloss:0.367838 val-mlogloss:0.52986
[685] train-mlogloss:0.367654 val-mlogloss:0.529839
[686] train-mlogloss:0.367435 val-mlogloss:0.529797
[687] train-mlogloss:0.367231 val-mlogloss:0.529733
[688] train-mlogloss:0.367037 val-mlogloss:0.529751
[689] train-mlogloss:0.366882 val-mlogloss:0.529742
[690] train-mlogloss:0.366764 val-mlogloss:0.529728
[691] train-mlogloss:0.366565 val-mlogloss:0.529707
[692] train-mlogloss:0.366462 val-mlogloss:0.529714
[693] train-mlogloss:0.366276 val-mlogloss:0.529693
[694] train-mlogloss:0.366093 val-mlogloss:0.529666
[695] train-mlogloss:0.365891 val-mlogloss:0.529672
[696] train-mlogloss:0.365695 val-mlogloss:0.529673
[697] train-mlogloss:0.365548 val-mlogloss:0.52968
[698] train-mlogloss:0.36534 val-mlogloss:0.529655
[699] train-mlogloss:0.365157 val-mlogloss:0.529637
[700] train-mlogloss:0.365005 val-mlogloss:0.529602
[701] train-mlogloss:0.364825 val-mlogloss:0.529598
[702] train-mlogloss:0.364671 val-mlogloss:0.529579
[703] train-mlogloss:0.364583 val-mlogloss:0.529598
[704] train-mlogloss:0.364354 val-mlogloss:0.529547
[705] train-mlogloss:0.364188 val-mlogloss:0.529547
[706] train-mlogloss:0.364053 val-mlogloss:0.529544
[707] train-mlogloss:0.363931 val-mlogloss:0.529542
[708] train-mlogloss:0.363772 val-mlogloss:0.529559
[709] train-mlogloss:0.363585 val-mlogloss:0.529558
[710] train-mlogloss:0.363391 val-mlogloss:0.529542
[711] train-mlogloss:0.363147 val-mlogloss:0.529501
[712] train-mlogloss:0.362987 val-mlogloss:0.529502
[713] train-mlogloss:0.362768 val-mlogloss:0.529507
[714] train-mlogloss:0.362637 val-mlogloss:0.529502
[715] train-mlogloss:0.362484 val-mlogloss:0.52949
[716] train-mlogloss:0.362332 val-mlogloss:0.529469
[717] train-mlogloss:0.362176 val-mlogloss:0.529442
[718] train-mlogloss:0.362007 val-mlogloss:0.529425
[719] train-mlogloss:0.361843 val-mlogloss:0.529423
[720] train-mlogloss:0.361663 val-mlogloss:0.529398
[721] train-mlogloss:0.361499 val-mlogloss:0.529396
[722] train-mlogloss:0.361312 val-mlogloss:0.529403
[723] train-mlogloss:0.36117 val-mlogloss:0.529364
[724] train-mlogloss:0.361007 val-mlogloss:0.529385
[725] train-mlogloss:0.360872 val-mlogloss:0.529355
[726] train-mlogloss:0.360703 val-mlogloss:0.529349
[727] train-mlogloss:0.360534 val-mlogloss:0.529382
[728] train-mlogloss:0.36037 val-mlogloss:0.529366
[729] train-mlogloss:0.360164 val-mlogloss:0.52935
[730] train-mlogloss:0.360009 val-mlogloss:0.529362
[731] train-mlogloss:0.359822 val-mlogloss:0.529353
[732] train-mlogloss:0.359647 val-mlogloss:0.529388
[733] train-mlogloss:0.359518 val-mlogloss:0.529377
[734] train-mlogloss:0.359287 val-mlogloss:0.529375
[735] train-mlogloss:0.359131 val-mlogloss:0.529364
[736] train-mlogloss:0.35893 val-mlogloss:0.529366
[737] train-mlogloss:0.358716 val-mlogloss:0.529358
[738] train-mlogloss:0.358518 val-mlogloss:0.529371
[739] train-mlogloss:0.358307 val-mlogloss:0.529347
[740] train-mlogloss:0.35806 val-mlogloss:0.529345
[741] train-mlogloss:0.357868 val-mlogloss:0.529317
[742] train-mlogloss:0.357685 val-mlogloss:0.529284
[743] train-mlogloss:0.357547 val-mlogloss:0.529279
[744] train-mlogloss:0.357344 val-mlogloss:0.529276
[745] train-mlogloss:0.357131 val-mlogloss:0.529293
[746] train-mlogloss:0.356933 val-mlogloss:0.529295
[747] train-mlogloss:0.356697 val-mlogloss:0.529294
[748] train-mlogloss:0.356465 val-mlogloss:0.529275
[749] train-mlogloss:0.356225 val-mlogloss:0.529257
[750] train-mlogloss:0.356059 val-mlogloss:0.52922
[751] train-mlogloss:0.355889 val-mlogloss:0.529248
[752] train-mlogloss:0.355727 val-mlogloss:0.52926
[753] train-mlogloss:0.355529 val-mlogloss:0.529223
[754] train-mlogloss:0.35535 val-mlogloss:0.529191
[755] train-mlogloss:0.355193 val-mlogloss:0.529187
[756] train-mlogloss:0.355031 val-mlogloss:0.529181
[757] train-mlogloss:0.354869 val-mlogloss:0.529159
[758] train-mlogloss:0.35469 val-mlogloss:0.52913
[759] train-mlogloss:0.354568 val-mlogloss:0.52913
[760] train-mlogloss:0.354407 val-mlogloss:0.529137
[761] train-mlogloss:0.354247 val-mlogloss:0.52914
[762] train-mlogloss:0.354086 val-mlogloss:0.529119
[763] train-mlogloss:0.353918 val-mlogloss:0.529087
[764] train-mlogloss:0.353751 val-mlogloss:0.529055
[765] train-mlogloss:0.353562 val-mlogloss:0.529042
[766] train-mlogloss:0.353348 val-mlogloss:0.529034
[767] train-mlogloss:0.353137 val-mlogloss:0.529034
[768] train-mlogloss:0.352974 val-mlogloss:0.529026
[769] train-mlogloss:0.352808 val-mlogloss:0.528997
[770] train-mlogloss:0.352609 val-mlogloss:0.528968
[771] train-mlogloss:0.352416 val-mlogloss:0.528965
[772] train-mlogloss:0.35222 val-mlogloss:0.528975
[773] train-mlogloss:0.352013 val-mlogloss:0.528964
[774] train-mlogloss:0.351832 val-mlogloss:0.528953
[775] train-mlogloss:0.351657 val-mlogloss:0.528967
[776] train-mlogloss:0.351495 val-mlogloss:0.528971
[777] train-mlogloss:0.351333 val-mlogloss:0.528979
[778] train-mlogloss:0.35116 val-mlogloss:0.528988
[779] train-mlogloss:0.350991 val-mlogloss:0.528979
[780] train-mlogloss:0.350776 val-mlogloss:0.528937
[781] train-mlogloss:0.350583 val-mlogloss:0.528897
[782] train-mlogloss:0.350422 val-mlogloss:0.528897
[783] train-mlogloss:0.350296 val-mlogloss:0.528904
[784] train-mlogloss:0.350181 val-mlogloss:0.528908
[785] train-mlogloss:0.349999 val-mlogloss:0.528879
[786] train-mlogloss:0.349795 val-mlogloss:0.528867
[787] train-mlogloss:0.349627 val-mlogloss:0.528849
[788] train-mlogloss:0.349414 val-mlogloss:0.528836
[789] train-mlogloss:0.349251 val-mlogloss:0.528805
[790] train-mlogloss:0.349089 val-mlogloss:0.528765
[791] train-mlogloss:0.348921 val-mlogloss:0.528772
[792] train-mlogloss:0.348751 val-mlogloss:0.528777
[793] train-mlogloss:0.348564 val-mlogloss:0.528793
[794] train-mlogloss:0.348361 val-mlogloss:0.528788
[795] train-mlogloss:0.348206 val-mlogloss:0.528809
[796] train-mlogloss:0.348033 val-mlogloss:0.528786
[797] train-mlogloss:0.34787 val-mlogloss:0.528823
[798] train-mlogloss:0.347737 val-mlogloss:0.528791
[799] train-mlogloss:0.347551 val-mlogloss:0.52881
[800] train-mlogloss:0.34743 val-mlogloss:0.528813
[801] train-mlogloss:0.347264 val-mlogloss:0.528811
[802] train-mlogloss:0.347138 val-mlogloss:0.528777
[803] train-mlogloss:0.347019 val-mlogloss:0.528774
[804] train-mlogloss:0.346825 val-mlogloss:0.528787
[805] train-mlogloss:0.34663 val-mlogloss:0.528737
[806] train-mlogloss:0.346503 val-mlogloss:0.528727
[807] train-mlogloss:0.346316 val-mlogloss:0.52872
[808] train-mlogloss:0.346191 val-mlogloss:0.528726
[809] train-mlogloss:0.346024 val-mlogloss:0.528706
[810] train-mlogloss:0.345836 val-mlogloss:0.528699
[811] train-mlogloss:0.345616 val-mlogloss:0.528612
[812] train-mlogloss:0.345439 val-mlogloss:0.528596
[813] train-mlogloss:0.345283 val-mlogloss:0.528573
[814] train-mlogloss:0.345145 val-mlogloss:0.528532
[815] train-mlogloss:0.344958 val-mlogloss:0.528482
[816] train-mlogloss:0.34477 val-mlogloss:0.528454
[817] train-mlogloss:0.344667 val-mlogloss:0.528448
[818] train-mlogloss:0.344531 val-mlogloss:0.528431
[819] train-mlogloss:0.344373 val-mlogloss:0.528408
[820] train-mlogloss:0.344194 val-mlogloss:0.528392
[821] train-mlogloss:0.344023 val-mlogloss:0.528379
[822] train-mlogloss:0.343869 val-mlogloss:0.528384
[823] train-mlogloss:0.34371 val-mlogloss:0.528379
[824] train-mlogloss:0.343512 val-mlogloss:0.528381
[825] train-mlogloss:0.343346 val-mlogloss:0.528383
[826] train-mlogloss:0.343154 val-mlogloss:0.528392
[827] train-mlogloss:0.342966 val-mlogloss:0.528369
[828] train-mlogloss:0.342867 val-mlogloss:0.528349
[829] train-mlogloss:0.342685 val-mlogloss:0.528317
[830] train-mlogloss:0.342504 val-mlogloss:0.528287
[831] train-mlogloss:0.342279 val-mlogloss:0.528262
[832] train-mlogloss:0.342061 val-mlogloss:0.528248
[833] train-mlogloss:0.341925 val-mlogloss:0.528251
[834] train-mlogloss:0.341789 val-mlogloss:0.528211
[835] train-mlogloss:0.34162 val-mlogloss:0.52824
[836] train-mlogloss:0.341453 val-mlogloss:0.528242
[837] train-mlogloss:0.34132 val-mlogloss:0.528236
[838] train-mlogloss:0.341137 val-mlogloss:0.528233
[839] train-mlogloss:0.341038 val-mlogloss:0.52822
[840] train-mlogloss:0.340886 val-mlogloss:0.5282
[841] train-mlogloss:0.340741 val-mlogloss:0.528193
[842] train-mlogloss:0.340542 val-mlogloss:0.528191
[843] train-mlogloss:0.340433 val-mlogloss:0.528205
[844] train-mlogloss:0.340242 val-mlogloss:0.528183
[845] train-mlogloss:0.340025 val-mlogloss:0.528178
[846] train-mlogloss:0.33984 val-mlogloss:0.528193
[847] train-mlogloss:0.339726 val-mlogloss:0.528201
[848] train-mlogloss:0.339633 val-mlogloss:0.528213
[849] train-mlogloss:0.339496 val-mlogloss:0.528221
[850] train-mlogloss:0.339336 val-mlogloss:0.528196
[851] train-mlogloss:0.339113 val-mlogloss:0.528193
[852] train-mlogloss:0.338999 val-mlogloss:0.528235
[853] train-mlogloss:0.338847 val-mlogloss:0.52823
[854] train-mlogloss:0.33871 val-mlogloss:0.528245
[855] train-mlogloss:0.338536 val-mlogloss:0.528242
[856] train-mlogloss:0.3384 val-mlogloss:0.528234
[857] train-mlogloss:0.338204 val-mlogloss:0.528248
[858] train-mlogloss:0.338001 val-mlogloss:0.528251
[859] train-mlogloss:0.33789 val-mlogloss:0.528248
[860] train-mlogloss:0.337711 val-mlogloss:0.52826
[861] train-mlogloss:0.337629 val-mlogloss:0.528258
[862] train-mlogloss:0.337463 val-mlogloss:0.528267
[863] train-mlogloss:0.337324 val-mlogloss:0.52825
[864] train-mlogloss:0.337114 val-mlogloss:0.528242
[865] train-mlogloss:0.336922 val-mlogloss:0.52824
[866] train-mlogloss:0.336774 val-mlogloss:0.528262
[867] train-mlogloss:0.336627 val-mlogloss:0.528242
[868] train-mlogloss:0.336439 val-mlogloss:0.528233
[869] train-mlogloss:0.33632 val-mlogloss:0.528225
[870] train-mlogloss:0.336174 val-mlogloss:0.528191
[871] train-mlogloss:0.336065 val-mlogloss:0.52818
[872] train-mlogloss:0.335923 val-mlogloss:0.528193
[873] train-mlogloss:0.335758 val-mlogloss:0.528174
[874] train-mlogloss:0.335566 val-mlogloss:0.528174
[875] train-mlogloss:0.335404 val-mlogloss:0.528176
[876] train-mlogloss:0.335273 val-mlogloss:0.528156
[877] train-mlogloss:0.335078 val-mlogloss:0.52816
[878] train-mlogloss:0.334961 val-mlogloss:0.528162
[879] train-mlogloss:0.334827 val-mlogloss:0.528187
[880] train-mlogloss:0.33468 val-mlogloss:0.52816
[881] train-mlogloss:0.334539 val-mlogloss:0.528167
[882] train-mlogloss:0.334436 val-mlogloss:0.528148
[883] train-mlogloss:0.334287 val-mlogloss:0.528145
[884] train-mlogloss:0.334117 val-mlogloss:0.52817
[885] train-mlogloss:0.333965 val-mlogloss:0.528191
[886] train-mlogloss:0.333825 val-mlogloss:0.528194
[887] train-mlogloss:0.333704 val-mlogloss:0.528238
[888] train-mlogloss:0.333523 val-mlogloss:0.528183
[889] train-mlogloss:0.333399 val-mlogloss:0.528182
[890] train-mlogloss:0.333246 val-mlogloss:0.528184
[891] train-mlogloss:0.333128 val-mlogloss:0.528163
[892] train-mlogloss:0.332999 val-mlogloss:0.528165
[893] train-mlogloss:0.332847 val-mlogloss:0.52816
[894] train-mlogloss:0.332722 val-mlogloss:0.528153
[895] train-mlogloss:0.332567 val-mlogloss:0.528141
[896] train-mlogloss:0.332443 val-mlogloss:0.528144
[897] train-mlogloss:0.332266 val-mlogloss:0.528142
[898] train-mlogloss:0.332139 val-mlogloss:0.528152
[899] train-mlogloss:0.331954 val-mlogloss:0.528156
[900] train-mlogloss:0.331802 val-mlogloss:0.528159
[901] train-mlogloss:0.331613 val-mlogloss:0.528143
[902] train-mlogloss:0.331422 val-mlogloss:0.528133
[903] train-mlogloss:0.331245 val-mlogloss:0.528124
[904] train-mlogloss:0.331058 val-mlogloss:0.528107
[905] train-mlogloss:0.330916 val-mlogloss:0.528114
[906] train-mlogloss:0.330829 val-mlogloss:0.52812
[907] train-mlogloss:0.330706 val-mlogloss:0.528104
[908] train-mlogloss:0.330544 val-mlogloss:0.528068
[909] train-mlogloss:0.330381 val-mlogloss:0.528077
[910] train-mlogloss:0.330242 val-mlogloss:0.528057
[911] train-mlogloss:0.330066 val-mlogloss:0.528069
[912] train-mlogloss:0.329893 val-mlogloss:0.528045
[913] train-mlogloss:0.329759 val-mlogloss:0.528064
[914] train-mlogloss:0.329647 val-mlogloss:0.528071
[915] train-mlogloss:0.329545 val-mlogloss:0.528085
[916] train-mlogloss:0.329357 val-mlogloss:0.528074
[917] train-mlogloss:0.329207 val-mlogloss:0.528063
[918] train-mlogloss:0.329094 val-mlogloss:0.528086
[919] train-mlogloss:0.328961 val-mlogloss:0.528106
[920] train-mlogloss:0.328844 val-mlogloss:0.528068
[921] train-mlogloss:0.328632 val-mlogloss:0.528104
[922] train-mlogloss:0.32848 val-mlogloss:0.528151
[923] train-mlogloss:0.328312 val-mlogloss:0.528097
[924] train-mlogloss:0.328147 val-mlogloss:0.528034
[925] train-mlogloss:0.327967 val-mlogloss:0.528044
[926] train-mlogloss:0.327836 val-mlogloss:0.528063
[927] train-mlogloss:0.327692 val-mlogloss:0.52805
[928] train-mlogloss:0.327545 val-mlogloss:0.528045
[929] train-mlogloss:0.327356 val-mlogloss:0.528053
[930] train-mlogloss:0.327215 val-mlogloss:0.528033
[931] train-mlogloss:0.327073 val-mlogloss:0.528029
[932] train-mlogloss:0.326964 val-mlogloss:0.528046
[933] train-mlogloss:0.326814 val-mlogloss:0.52806
[934] train-mlogloss:0.326662 val-mlogloss:0.528055
[935] train-mlogloss:0.326464 val-mlogloss:0.528039
[936] train-mlogloss:0.326306 val-mlogloss:0.528041
[937] train-mlogloss:0.32611 val-mlogloss:0.528025
[938] train-mlogloss:0.325971 val-mlogloss:0.528027
[939] train-mlogloss:0.32585 val-mlogloss:0.528053
[940] train-mlogloss:0.325693 val-mlogloss:0.52808
[941] train-mlogloss:0.325496 val-mlogloss:0.528036
[942] train-mlogloss:0.325352 val-mlogloss:0.528007
[943] train-mlogloss:0.325224 val-mlogloss:0.528002
[944] train-mlogloss:0.325091 val-mlogloss:0.528047
[945] train-mlogloss:0.324915 val-mlogloss:0.528096
[946] train-mlogloss:0.324783 val-mlogloss:0.528074
[947] train-mlogloss:0.324644 val-mlogloss:0.528126
[948] train-mlogloss:0.324525 val-mlogloss:0.528118
[949] train-mlogloss:0.324357 val-mlogloss:0.528098
[950] train-mlogloss:0.324189 val-mlogloss:0.528099
[951] train-mlogloss:0.324061 val-mlogloss:0.528106
[952] train-mlogloss:0.323875 val-mlogloss:0.528109
[953] train-mlogloss:0.323764 val-mlogloss:0.528082
[954] train-mlogloss:0.323699 val-mlogloss:0.528068
[955] train-mlogloss:0.323551 val-mlogloss:0.528051
[956] train-mlogloss:0.32335 val-mlogloss:0.528063
[957] train-mlogloss:0.323188 val-mlogloss:0.528073
[958] train-mlogloss:0.32304 val-mlogloss:0.528051
[959] train-mlogloss:0.322828 val-mlogloss:0.528056
[960] train-mlogloss:0.322638 val-mlogloss:0.528066
[961] train-mlogloss:0.322486 val-mlogloss:0.528053
[962] train-mlogloss:0.322354 val-mlogloss:0.528039
[963] train-mlogloss:0.322163 val-mlogloss:0.52804
[964] train-mlogloss:0.322008 val-mlogloss:0.528058
[965] train-mlogloss:0.32188 val-mlogloss:0.528069
[966] train-mlogloss:0.321747 val-mlogloss:0.528035
[967] train-mlogloss:0.321592 val-mlogloss:0.52801
[968] train-mlogloss:0.32142 val-mlogloss:0.527992
[969] train-mlogloss:0.321268 val-mlogloss:0.527983
[970] train-mlogloss:0.321113 val-mlogloss:0.528005
[971] train-mlogloss:0.320979 val-mlogloss:0.52799
[972] train-mlogloss:0.32084 val-mlogloss:0.52797
[973] train-mlogloss:0.320754 val-mlogloss:0.527985
[974] train-mlogloss:0.320625 val-mlogloss:0.527998
[975] train-mlogloss:0.320502 val-mlogloss:0.527975
[976] train-mlogloss:0.320342 val-mlogloss:0.527982
[977] train-mlogloss:0.32016 val-mlogloss:0.527975
[978] train-mlogloss:0.320044 val-mlogloss:0.527969
[979] train-mlogloss:0.319901 val-mlogloss:0.527954
[980] train-mlogloss:0.319743 val-mlogloss:0.528009
[981] train-mlogloss:0.319617 val-mlogloss:0.528004
[982] train-mlogloss:0.319425 val-mlogloss:0.528063
[983] train-mlogloss:0.319263 val-mlogloss:0.528066
[984] train-mlogloss:0.319153 val-mlogloss:0.528061
[985] train-mlogloss:0.318969 val-mlogloss:0.528075
[986] train-mlogloss:0.318826 val-mlogloss:0.528066
[987] train-mlogloss:0.318721 val-mlogloss:0.528064
[988] train-mlogloss:0.318593 val-mlogloss:0.528105
[989] train-mlogloss:0.318489 val-mlogloss:0.528081
[990] train-mlogloss:0.318339 val-mlogloss:0.528087
[991] train-mlogloss:0.318215 val-mlogloss:0.528056
[992] train-mlogloss:0.318041 val-mlogloss:0.528052
[993] train-mlogloss:0.317847 val-mlogloss:0.52803
[994] train-mlogloss:0.317691 val-mlogloss:0.528032
[995] train-mlogloss:0.317562 val-mlogloss:0.528032
[996] train-mlogloss:0.3174 val-mlogloss:0.528038
[997] train-mlogloss:0.317216 val-mlogloss:0.528041
[998] train-mlogloss:0.317087 val-mlogloss:0.528029
[999] train-mlogloss:0.316924 val-mlogloss:0.528023
[1000] train-mlogloss:0.316755 val-mlogloss:0.528071
[1001] train-mlogloss:0.316637 val-mlogloss:0.528079
[1002] train-mlogloss:0.316485 val-mlogloss:0.528094
[1003] train-mlogloss:0.316314 val-mlogloss:0.528093
[1004] train-mlogloss:0.316211 val-mlogloss:0.528084
[1005] train-mlogloss:0.316092 val-mlogloss:0.528104
[1006] train-mlogloss:0.315957 val-mlogloss:0.528106
[1007] train-mlogloss:0.315782 val-mlogloss:0.52811
[1008] train-mlogloss:0.315625 val-mlogloss:0.528115
[1009] train-mlogloss:0.315469 val-mlogloss:0.528068
[1010] train-mlogloss:0.315374 val-mlogloss:0.528086
[1011] train-mlogloss:0.31525 val-mlogloss:0.5281
[1012] train-mlogloss:0.315127 val-mlogloss:0.52812
[1013] train-mlogloss:0.314985 val-mlogloss:0.528125
[1014] train-mlogloss:0.314815 val-mlogloss:0.528174
[1015] train-mlogloss:0.31463 val-mlogloss:0.528177
[1016] train-mlogloss:0.314486 val-mlogloss:0.528189
[1017] train-mlogloss:0.314336 val-mlogloss:0.528167
[1018] train-mlogloss:0.314189 val-mlogloss:0.528178
[1019] train-mlogloss:0.314041 val-mlogloss:0.528181
[1020] train-mlogloss:0.313979 val-mlogloss:0.528181
[1021] train-mlogloss:0.313818 val-mlogloss:0.528187
[1022] train-mlogloss:0.313686 val-mlogloss:0.528162
[1023] train-mlogloss:0.313532 val-mlogloss:0.528133
[1024] train-mlogloss:0.313365 val-mlogloss:0.528117
[1025] train-mlogloss:0.313227 val-mlogloss:0.52813
[1026] train-mlogloss:0.313062 val-mlogloss:0.528102
[1027] train-mlogloss:0.312919 val-mlogloss:0.528111
[1028] train-mlogloss:0.312773 val-mlogloss:0.528097
[1029] train-mlogloss:0.312653 val-mlogloss:0.528098
Stopping. Best iteration:
[979] train-mlogloss:0.319901 val-mlogloss:0.527954
[0] train-mlogloss:1.07767 val-mlogloss:1.07815
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.
Will train until val-mlogloss hasn't improved in 50 rounds.
[1] train-mlogloss:1.05806 val-mlogloss:1.05906
[2] train-mlogloss:1.03919 val-mlogloss:1.04071
[3] train-mlogloss:1.02124 val-mlogloss:1.02323
[4] train-mlogloss:1.00398 val-mlogloss:1.00646
[5] train-mlogloss:0.98748 val-mlogloss:0.990486
[6] train-mlogloss:0.971963 val-mlogloss:0.975414
[7] train-mlogloss:0.956857 val-mlogloss:0.960818
[8] train-mlogloss:0.942506 val-mlogloss:0.946983
[9] train-mlogloss:0.928764 val-mlogloss:0.933616
[10] train-mlogloss:0.915592 val-mlogloss:0.920944
[11] train-mlogloss:0.902997 val-mlogloss:0.908762
[12] train-mlogloss:0.890779 val-mlogloss:0.897061
[13] train-mlogloss:0.879202 val-mlogloss:0.885924
[14] train-mlogloss:0.868047 val-mlogloss:0.875236
[15] train-mlogloss:0.857392 val-mlogloss:0.865048
[16] train-mlogloss:0.847187 val-mlogloss:0.855252
[17] train-mlogloss:0.837292 val-mlogloss:0.845799
[18] train-mlogloss:0.827776 val-mlogloss:0.836699
[19] train-mlogloss:0.818744 val-mlogloss:0.828045
[20] train-mlogloss:0.809986 val-mlogloss:0.819765
[21] train-mlogloss:0.801495 val-mlogloss:0.81174
[22] train-mlogloss:0.793204 val-mlogloss:0.803835
[23] train-mlogloss:0.785279 val-mlogloss:0.796255
[24] train-mlogloss:0.777775 val-mlogloss:0.789106
[25] train-mlogloss:0.770446 val-mlogloss:0.782169
[26] train-mlogloss:0.763309 val-mlogloss:0.775468
[27] train-mlogloss:0.756385 val-mlogloss:0.768883
[28] train-mlogloss:0.749686 val-mlogloss:0.762523
[29] train-mlogloss:0.743241 val-mlogloss:0.756435
[30] train-mlogloss:0.737042 val-mlogloss:0.750627
[31] train-mlogloss:0.731035 val-mlogloss:0.744944
[32] train-mlogloss:0.725258 val-mlogloss:0.739431
[33] train-mlogloss:0.719628 val-mlogloss:0.734157
[34] train-mlogloss:0.714163 val-mlogloss:0.729121
[35] train-mlogloss:0.70897 val-mlogloss:0.724241
[36] train-mlogloss:0.703931 val-mlogloss:0.719499
[37] train-mlogloss:0.699056 val-mlogloss:0.714974
[38] train-mlogloss:0.69434 val-mlogloss:0.710612
[39] train-mlogloss:0.689778 val-mlogloss:0.706456
[40] train-mlogloss:0.685391 val-mlogloss:0.702464
[41] train-mlogloss:0.681112 val-mlogloss:0.698499
[42] train-mlogloss:0.676935 val-mlogloss:0.694608
[43] train-mlogloss:0.672866 val-mlogloss:0.690916
[44] train-mlogloss:0.668868 val-mlogloss:0.687209
[45] train-mlogloss:0.665094 val-mlogloss:0.683743
[46] train-mlogloss:0.661528 val-mlogloss:0.680504
[47] train-mlogloss:0.657986 val-mlogloss:0.677262
[48] train-mlogloss:0.654498 val-mlogloss:0.674131
[49] train-mlogloss:0.651113 val-mlogloss:0.671064
[50] train-mlogloss:0.647764 val-mlogloss:0.668076
[51] train-mlogloss:0.644517 val-mlogloss:0.665133
[52] train-mlogloss:0.641423 val-mlogloss:0.662362
[53] train-mlogloss:0.638415 val-mlogloss:0.659639
[54] train-mlogloss:0.635412 val-mlogloss:0.656943
[55] train-mlogloss:0.632558 val-mlogloss:0.654403
[56] train-mlogloss:0.629715 val-mlogloss:0.651872
[57] train-mlogloss:0.627058 val-mlogloss:0.649485
[58] train-mlogloss:0.624439 val-mlogloss:0.647258
[59] train-mlogloss:0.621903 val-mlogloss:0.644979
[60] train-mlogloss:0.619328 val-mlogloss:0.642668
[61] train-mlogloss:0.616914 val-mlogloss:0.640631
[62] train-mlogloss:0.614496 val-mlogloss:0.63858
[63] train-mlogloss:0.61213 val-mlogloss:0.636518
[64] train-mlogloss:0.609794 val-mlogloss:0.634594
[65] train-mlogloss:0.607601 val-mlogloss:0.632729
[66] train-mlogloss:0.605494 val-mlogloss:0.630907
[67] train-mlogloss:0.60348 val-mlogloss:0.629151
[68] train-mlogloss:0.60144 val-mlogloss:0.627415
[69] train-mlogloss:0.599463 val-mlogloss:0.625695
[70] train-mlogloss:0.597528 val-mlogloss:0.6241
[71] train-mlogloss:0.595494 val-mlogloss:0.62234
[72] train-mlogloss:0.593742 val-mlogloss:0.620837
[73] train-mlogloss:0.592017 val-mlogloss:0.619328
[74] train-mlogloss:0.590297 val-mlogloss:0.617895
[75] train-mlogloss:0.588526 val-mlogloss:0.616409
[76] train-mlogloss:0.586758 val-mlogloss:0.614931
[77] train-mlogloss:0.58496 val-mlogloss:0.613435
[78] train-mlogloss:0.583421 val-mlogloss:0.612149
[79] train-mlogloss:0.581844 val-mlogloss:0.610835
[80] train-mlogloss:0.58026 val-mlogloss:0.609544
[81] train-mlogloss:0.578775 val-mlogloss:0.6083
[82] train-mlogloss:0.577323 val-mlogloss:0.607069
[83] train-mlogloss:0.575818 val-mlogloss:0.605839
[84] train-mlogloss:0.574429 val-mlogloss:0.604657
[85] train-mlogloss:0.572949 val-mlogloss:0.603544
[86] train-mlogloss:0.571471 val-mlogloss:0.602339
[87] train-mlogloss:0.570155 val-mlogloss:0.601325
[88] train-mlogloss:0.568867 val-mlogloss:0.60024
[89] train-mlogloss:0.567562 val-mlogloss:0.599195
[90] train-mlogloss:0.566243 val-mlogloss:0.59823
[91] train-mlogloss:0.564992 val-mlogloss:0.597289
[92] train-mlogloss:0.563815 val-mlogloss:0.596393
[93] train-mlogloss:0.562543 val-mlogloss:0.59543
[94] train-mlogloss:0.561272 val-mlogloss:0.594499
[95] train-mlogloss:0.560079 val-mlogloss:0.593686
[96] train-mlogloss:0.558994 val-mlogloss:0.592837
[97] train-mlogloss:0.557875 val-mlogloss:0.592001
[98] train-mlogloss:0.556803 val-mlogloss:0.591204
[99] train-mlogloss:0.555788 val-mlogloss:0.590443
[100] train-mlogloss:0.554809 val-mlogloss:0.589634
[101] train-mlogloss:0.553729 val-mlogloss:0.588775
[102] train-mlogloss:0.552647 val-mlogloss:0.587944
[103] train-mlogloss:0.551673 val-mlogloss:0.587218
[104] train-mlogloss:0.550573 val-mlogloss:0.586405
[105] train-mlogloss:0.549562 val-mlogloss:0.585682
[106] train-mlogloss:0.548655 val-mlogloss:0.584953
[107] train-mlogloss:0.54765 val-mlogloss:0.584282
[108] train-mlogloss:0.546796 val-mlogloss:0.583678
[109] train-mlogloss:0.545857 val-mlogloss:0.583023
[110] train-mlogloss:0.544953 val-mlogloss:0.582363
[111] train-mlogloss:0.544075 val-mlogloss:0.581778
[112] train-mlogloss:0.543233 val-mlogloss:0.581131
[113] train-mlogloss:0.542374 val-mlogloss:0.580529
[114] train-mlogloss:0.541509 val-mlogloss:0.579951
[115] train-mlogloss:0.540777 val-mlogloss:0.579437
[116] train-mlogloss:0.539953 val-mlogloss:0.57883
[117] train-mlogloss:0.539093 val-mlogloss:0.578232
[118] train-mlogloss:0.538292 val-mlogloss:0.57765
[119] train-mlogloss:0.537557 val-mlogloss:0.577149
[120] train-mlogloss:0.536739 val-mlogloss:0.576564
[121] train-mlogloss:0.535946 val-mlogloss:0.576075
[122] train-mlogloss:0.535196 val-mlogloss:0.57553
[123] train-mlogloss:0.534537 val-mlogloss:0.575127
[124] train-mlogloss:0.533821 val-mlogloss:0.574629
[125] train-mlogloss:0.533063 val-mlogloss:0.574081
[126] train-mlogloss:0.532257 val-mlogloss:0.573573
[127] train-mlogloss:0.531512 val-mlogloss:0.573085
[128] train-mlogloss:0.530777 val-mlogloss:0.572621
[129] train-mlogloss:0.530136 val-mlogloss:0.572178
[130] train-mlogloss:0.529433 val-mlogloss:0.571681
[131] train-mlogloss:0.528791 val-mlogloss:0.571233
[132] train-mlogloss:0.52808 val-mlogloss:0.570762
[133] train-mlogloss:0.527417 val-mlogloss:0.570344
[134] train-mlogloss:0.526735 val-mlogloss:0.569915
[135] train-mlogloss:0.526088 val-mlogloss:0.5695
[136] train-mlogloss:0.525442 val-mlogloss:0.56907
[137] train-mlogloss:0.524697 val-mlogloss:0.568608
[138] train-mlogloss:0.524135 val-mlogloss:0.568235
[139] train-mlogloss:0.523564 val-mlogloss:0.567874
[140] train-mlogloss:0.522842 val-mlogloss:0.567508
[141] train-mlogloss:0.522122 val-mlogloss:0.567084
[142] train-mlogloss:0.521474 val-mlogloss:0.56662
[143] train-mlogloss:0.520901 val-mlogloss:0.566315
[144] train-mlogloss:0.52028 val-mlogloss:0.565951
[145] train-mlogloss:0.519701 val-mlogloss:0.565626
[146] train-mlogloss:0.519033 val-mlogloss:0.565245
[147] train-mlogloss:0.518369 val-mlogloss:0.564881
[148] train-mlogloss:0.517848 val-mlogloss:0.564599
[149] train-mlogloss:0.517299 val-mlogloss:0.56433
[150] train-mlogloss:0.516723 val-mlogloss:0.563932
[151] train-mlogloss:0.516091 val-mlogloss:0.563622
[152] train-mlogloss:0.515667 val-mlogloss:0.563361
[153] train-mlogloss:0.515133 val-mlogloss:0.563068
[154] train-mlogloss:0.514561 val-mlogloss:0.562739
[155] train-mlogloss:0.514037 val-mlogloss:0.562468
[156] train-mlogloss:0.513465 val-mlogloss:0.562104
[157] train-mlogloss:0.512977 val-mlogloss:0.561833
[158] train-mlogloss:0.512373 val-mlogloss:0.561432
[159] train-mlogloss:0.511905 val-mlogloss:0.56119
[160] train-mlogloss:0.511424 val-mlogloss:0.56088
[161] train-mlogloss:0.510979 val-mlogloss:0.560604
[162] train-mlogloss:0.51043 val-mlogloss:0.56025
[163] train-mlogloss:0.509769 val-mlogloss:0.559945
[164] train-mlogloss:0.509201 val-mlogloss:0.559641
[165] train-mlogloss:0.508617 val-mlogloss:0.559299
[166] train-mlogloss:0.507982 val-mlogloss:0.558997
[167] train-mlogloss:0.507494 val-mlogloss:0.558754
[168] train-mlogloss:0.507006 val-mlogloss:0.558476
[169] train-mlogloss:0.50643 val-mlogloss:0.558216
[170] train-mlogloss:0.506028 val-mlogloss:0.558002
[171] train-mlogloss:0.50558 val-mlogloss:0.557705
[172] train-mlogloss:0.505039 val-mlogloss:0.557439
[173] train-mlogloss:0.504625 val-mlogloss:0.557266
[174] train-mlogloss:0.50403 val-mlogloss:0.55693
[175] train-mlogloss:0.503614 val-mlogloss:0.556706
[176] train-mlogloss:0.503085 val-mlogloss:0.556505
[177] train-mlogloss:0.502667 val-mlogloss:0.556297
[178] train-mlogloss:0.502212 val-mlogloss:0.556061
[179] train-mlogloss:0.501746 val-mlogloss:0.555826
[180] train-mlogloss:0.501284 val-mlogloss:0.555571
[181] train-mlogloss:0.500828 val-mlogloss:0.555331
[182] train-mlogloss:0.500242 val-mlogloss:0.555066
[183] train-mlogloss:0.499693 val-mlogloss:0.554826
[184] train-mlogloss:0.499265 val-mlogloss:0.554644
[185] train-mlogloss:0.498726 val-mlogloss:0.554401
[186] train-mlogloss:0.498247 val-mlogloss:0.554262
[187] train-mlogloss:0.497891 val-mlogloss:0.554068
[188] train-mlogloss:0.497499 val-mlogloss:0.553885
[189] train-mlogloss:0.497025 val-mlogloss:0.553749
[190] train-mlogloss:0.496606 val-mlogloss:0.553532
[191] train-mlogloss:0.496172 val-mlogloss:0.553326
[192] train-mlogloss:0.49577 val-mlogloss:0.553148
[193] train-mlogloss:0.495293 val-mlogloss:0.55293
[194] train-mlogloss:0.494807 val-mlogloss:0.552675
[195] train-mlogloss:0.494313 val-mlogloss:0.552406
[196] train-mlogloss:0.493812 val-mlogloss:0.552239
[197] train-mlogloss:0.493343 val-mlogloss:0.552014
[198] train-mlogloss:0.492854 val-mlogloss:0.551783
[199] train-mlogloss:0.49238 val-mlogloss:0.551532
[200] train-mlogloss:0.491947 val-mlogloss:0.551279
[201] train-mlogloss:0.491539 val-mlogloss:0.551109
[202] train-mlogloss:0.491142 val-mlogloss:0.550961
[203] train-mlogloss:0.490689 val-mlogloss:0.550759
[204] train-mlogloss:0.490216 val-mlogloss:0.550544
[205] train-mlogloss:0.4899 val-mlogloss:0.550379
[206] train-mlogloss:0.489425 val-mlogloss:0.550192
[207] train-mlogloss:0.488907 val-mlogloss:0.549986
[208] train-mlogloss:0.488469 val-mlogloss:0.549779
[209] train-mlogloss:0.487959 val-mlogloss:0.549601
[210] train-mlogloss:0.487405 val-mlogloss:0.549403
[211] train-mlogloss:0.486923 val-mlogloss:0.549193
[212] train-mlogloss:0.486409 val-mlogloss:0.549013
[213] train-mlogloss:0.485953 val-mlogloss:0.54879
[214] train-mlogloss:0.485526 val-mlogloss:0.54861
[215] train-mlogloss:0.485123 val-mlogloss:0.548372
[216] train-mlogloss:0.484794 val-mlogloss:0.548204
[217] train-mlogloss:0.484324 val-mlogloss:0.5481
[218] train-mlogloss:0.483943 val-mlogloss:0.547947
[219] train-mlogloss:0.483581 val-mlogloss:0.547802
[220] train-mlogloss:0.483136 val-mlogloss:0.547618
[221] train-mlogloss:0.482736 val-mlogloss:0.547448
[222] train-mlogloss:0.482312 val-mlogloss:0.547282
[223] train-mlogloss:0.481934 val-mlogloss:0.547094
[224] train-mlogloss:0.481472 val-mlogloss:0.546881
[225] train-mlogloss:0.481121 val-mlogloss:0.546726
[226] train-mlogloss:0.480801 val-mlogloss:0.546637
[227] train-mlogloss:0.480451 val-mlogloss:0.54648
[228] train-mlogloss:0.480036 val-mlogloss:0.546307
[229] train-mlogloss:0.479635 val-mlogloss:0.546113
[230] train-mlogloss:0.479281 val-mlogloss:0.545943
[231] train-mlogloss:0.478961 val-mlogloss:0.545853
[232] train-mlogloss:0.478499 val-mlogloss:0.545663
[233] train-mlogloss:0.478084 val-mlogloss:0.545485
[234] train-mlogloss:0.477806 val-mlogloss:0.545372
[235] train-mlogloss:0.477408 val-mlogloss:0.545218
[236] train-mlogloss:0.477135 val-mlogloss:0.545081
[237] train-mlogloss:0.476782 val-mlogloss:0.545005
[238] train-mlogloss:0.47651 val-mlogloss:0.5449
[239] train-mlogloss:0.476029 val-mlogloss:0.544745
[240] train-mlogloss:0.475534 val-mlogloss:0.544487
[241] train-mlogloss:0.475149 val-mlogloss:0.544384
[242] train-mlogloss:0.474743 val-mlogloss:0.544262
[243] train-mlogloss:0.474422 val-mlogloss:0.544098
[244] train-mlogloss:0.474104 val-mlogloss:0.543949
[245] train-mlogloss:0.473757 val-mlogloss:0.543814
[246] train-mlogloss:0.473511 val-mlogloss:0.543704
[247] train-mlogloss:0.473159 val-mlogloss:0.543562
[248] train-mlogloss:0.47282 val-mlogloss:0.543421
[249] train-mlogloss:0.472569 val-mlogloss:0.543301
[250] train-mlogloss:0.47217 val-mlogloss:0.543142
[251] train-mlogloss:0.471891 val-mlogloss:0.543016
[252] train-mlogloss:0.471504 val-mlogloss:0.542835
[253] train-mlogloss:0.47116 val-mlogloss:0.542758
[254] train-mlogloss:0.47076 val-mlogloss:0.542696
[255] train-mlogloss:0.470429 val-mlogloss:0.542617
[256] train-mlogloss:0.470111 val-mlogloss:0.542518
[257] train-mlogloss:0.469745 val-mlogloss:0.542371
[258] train-mlogloss:0.469288 val-mlogloss:0.542236
[259] train-mlogloss:0.469051 val-mlogloss:0.542189
[260] train-mlogloss:0.468827 val-mlogloss:0.542053
[261] train-mlogloss:0.468372 val-mlogloss:0.541953
[262] train-mlogloss:0.46806 val-mlogloss:0.541791
[263] train-mlogloss:0.467695 val-mlogloss:0.541671
[264] train-mlogloss:0.467383 val-mlogloss:0.541569
[265] train-mlogloss:0.46703 val-mlogloss:0.541417
[266] train-mlogloss:0.466688 val-mlogloss:0.541303
[267] train-mlogloss:0.46641 val-mlogloss:0.541197
[268] train-mlogloss:0.465968 val-mlogloss:0.541048
[269] train-mlogloss:0.465522 val-mlogloss:0.540949
[270] train-mlogloss:0.46522 val-mlogloss:0.540847
[271] train-mlogloss:0.464956 val-mlogloss:0.540763
[272] train-mlogloss:0.464636 val-mlogloss:0.540664
[273] train-mlogloss:0.464301 val-mlogloss:0.540528
[274] train-mlogloss:0.464045 val-mlogloss:0.540419
[275] train-mlogloss:0.463671 val-mlogloss:0.540317
[276] train-mlogloss:0.463332 val-mlogloss:0.540163
[277] train-mlogloss:0.46299 val-mlogloss:0.540052
[278] train-mlogloss:0.4627 val-mlogloss:0.539937
[279] train-mlogloss:0.462353 val-mlogloss:0.539816
[280] train-mlogloss:0.462046 val-mlogloss:0.539741
[281] train-mlogloss:0.461688 val-mlogloss:0.539651
[282] train-mlogloss:0.461349 val-mlogloss:0.539563
[283] train-mlogloss:0.461033 val-mlogloss:0.539398
[284] train-mlogloss:0.460726 val-mlogloss:0.539258
[285] train-mlogloss:0.460405 val-mlogloss:0.539147
[286] train-mlogloss:0.460032 val-mlogloss:0.539063
[287] train-mlogloss:0.459708 val-mlogloss:0.538924
[288] train-mlogloss:0.459519 val-mlogloss:0.538871
[289] train-mlogloss:0.459281 val-mlogloss:0.538793
[290] train-mlogloss:0.459028 val-mlogloss:0.538701
[291] train-mlogloss:0.458677 val-mlogloss:0.538576
[292] train-mlogloss:0.458301 val-mlogloss:0.538501
[293] train-mlogloss:0.457973 val-mlogloss:0.53845
[294] train-mlogloss:0.457695 val-mlogloss:0.538353
[295] train-mlogloss:0.45734 val-mlogloss:0.538258
[296] train-mlogloss:0.457096 val-mlogloss:0.538174
[297] train-mlogloss:0.456834 val-mlogloss:0.538076
[298] train-mlogloss:0.4565 val-mlogloss:0.537986
[299] train-mlogloss:0.456228 val-mlogloss:0.537919
[300] train-mlogloss:0.455911 val-mlogloss:0.537781
[301] train-mlogloss:0.455673 val-mlogloss:0.537717
[302] train-mlogloss:0.4554 val-mlogloss:0.537656
[303] train-mlogloss:0.455148 val-mlogloss:0.537583
[304] train-mlogloss:0.454791 val-mlogloss:0.537508
[305] train-mlogloss:0.454547 val-mlogloss:0.537425
[306] train-mlogloss:0.45431 val-mlogloss:0.537303
[307] train-mlogloss:0.454014 val-mlogloss:0.537185
[308] train-mlogloss:0.453725 val-mlogloss:0.537108
[309] train-mlogloss:0.45346 val-mlogloss:0.537061
[310] train-mlogloss:0.453177 val-mlogloss:0.536998
[311] train-mlogloss:0.452801 val-mlogloss:0.536962
[312] train-mlogloss:0.452475 val-mlogloss:0.53689
[313] train-mlogloss:0.452256 val-mlogloss:0.536762
[314] train-mlogloss:0.451937 val-mlogloss:0.536755
[315] train-mlogloss:0.451657 val-mlogloss:0.536693
[316] train-mlogloss:0.451404 val-mlogloss:0.536627
[317] train-mlogloss:0.45112 val-mlogloss:0.536495
[318] train-mlogloss:0.450777 val-mlogloss:0.536438
[319] train-mlogloss:0.45052 val-mlogloss:0.536394
[320] train-mlogloss:0.450175 val-mlogloss:0.536314
[321] train-mlogloss:0.449811 val-mlogloss:0.536254
[322] train-mlogloss:0.44945 val-mlogloss:0.536173
[323] train-mlogloss:0.449141 val-mlogloss:0.53607
[324] train-mlogloss:0.448949 val-mlogloss:0.536006
[325] train-mlogloss:0.448686 val-mlogloss:0.535965
[326] train-mlogloss:0.448388 val-mlogloss:0.535911
[327] train-mlogloss:0.448125 val-mlogloss:0.535868
[328] train-mlogloss:0.447875 val-mlogloss:0.535796
[329] train-mlogloss:0.447545 val-mlogloss:0.535744
[330] train-mlogloss:0.447256 val-mlogloss:0.535677
[331] train-mlogloss:0.447038 val-mlogloss:0.535581
[332] train-mlogloss:0.446788 val-mlogloss:0.535494
[333] train-mlogloss:0.446483 val-mlogloss:0.535435
[334] train-mlogloss:0.446189 val-mlogloss:0.535344
[335] train-mlogloss:0.445827 val-mlogloss:0.535233
[336] train-mlogloss:0.445634 val-mlogloss:0.53516
[337] train-mlogloss:0.445355 val-mlogloss:0.535104
[338] train-mlogloss:0.445139 val-mlogloss:0.535077
[339] train-mlogloss:0.444872 val-mlogloss:0.534979
[340] train-mlogloss:0.44467 val-mlogloss:0.534923
[341] train-mlogloss:0.444402 val-mlogloss:0.534851
[342] train-mlogloss:0.444112 val-mlogloss:0.534799
[343] train-mlogloss:0.443911 val-mlogloss:0.534759
[344] train-mlogloss:0.443553 val-mlogloss:0.534703
[345] train-mlogloss:0.443168 val-mlogloss:0.5346
[346] train-mlogloss:0.442881 val-mlogloss:0.534554
[347] train-mlogloss:0.442604 val-mlogloss:0.534467
[348] train-mlogloss:0.442397 val-mlogloss:0.534426
[349] train-mlogloss:0.442104 val-mlogloss:0.534364
[350] train-mlogloss:0.441928 val-mlogloss:0.534326
[351] train-mlogloss:0.44169 val-mlogloss:0.534294
[352] train-mlogloss:0.441412 val-mlogloss:0.534208
[353] train-mlogloss:0.441195 val-mlogloss:0.534156
[354] train-mlogloss:0.440852 val-mlogloss:0.534089
[355] train-mlogloss:0.44048 val-mlogloss:0.534007
[356] train-mlogloss:0.440156 val-mlogloss:0.533904
[357] train-mlogloss:0.439938 val-mlogloss:0.533855
[358] train-mlogloss:0.439626 val-mlogloss:0.533768
[359] train-mlogloss:0.439324 val-mlogloss:0.533706
[360] train-mlogloss:0.43915 val-mlogloss:0.533637
[361] train-mlogloss:0.438899 val-mlogloss:0.533534
[362] train-mlogloss:0.438667 val-mlogloss:0.533484
[363] train-mlogloss:0.438401 val-mlogloss:0.533448
[364] train-mlogloss:0.438171 val-mlogloss:0.533382
[365] train-mlogloss:0.437953 val-mlogloss:0.533315
[366] train-mlogloss:0.437738 val-mlogloss:0.533234
[367] train-mlogloss:0.437415 val-mlogloss:0.533167
[368] train-mlogloss:0.437134 val-mlogloss:0.533108
[369] train-mlogloss:0.436856 val-mlogloss:0.53303
[370] train-mlogloss:0.436504 val-mlogloss:0.532935
[371] train-mlogloss:0.436277 val-mlogloss:0.532893
[372] train-mlogloss:0.435972 val-mlogloss:0.532843
[373] train-mlogloss:0.43573 val-mlogloss:0.532743
[374] train-mlogloss:0.4355 val-mlogloss:0.532699
[375] train-mlogloss:0.435186 val-mlogloss:0.532648
[376] train-mlogloss:0.43492 val-mlogloss:0.532579
[377] train-mlogloss:0.434634 val-mlogloss:0.532519
[378] train-mlogloss:0.434385 val-mlogloss:0.532496
[379] train-mlogloss:0.434146 val-mlogloss:0.532429
[380] train-mlogloss:0.433854 val-mlogloss:0.532369
[381] train-mlogloss:0.433538 val-mlogloss:0.532287
[382] train-mlogloss:0.433217 val-mlogloss:0.532279
[383] train-mlogloss:0.432912 val-mlogloss:0.532197
[384] train-mlogloss:0.432665 val-mlogloss:0.532171
[385] train-mlogloss:0.432465 val-mlogloss:0.532116
[386] train-mlogloss:0.432106 val-mlogloss:0.532078
[387] train-mlogloss:0.431827 val-mlogloss:0.532026
[388] train-mlogloss:0.43152 val-mlogloss:0.531968
[389] train-mlogloss:0.431253 val-mlogloss:0.531898
[390] train-mlogloss:0.431056 val-mlogloss:0.531877
[391] train-mlogloss:0.430725 val-mlogloss:0.531824
[392] train-mlogloss:0.430478 val-mlogloss:0.531772
[393] train-mlogloss:0.430209 val-mlogloss:0.531741
[394] train-mlogloss:0.42998 val-mlogloss:0.531694
[395] train-mlogloss:0.42979 val-mlogloss:0.531695
[396] train-mlogloss:0.429584 val-mlogloss:0.531632
[397] train-mlogloss:0.42928 val-mlogloss:0.531524
[398] train-mlogloss:0.429046 val-mlogloss:0.53143
[399] train-mlogloss:0.428856 val-mlogloss:0.531385
[400] train-mlogloss:0.428683 val-mlogloss:0.531349
[401] train-mlogloss:0.42842 val-mlogloss:0.531314
[402] train-mlogloss:0.428193 val-mlogloss:0.531309
[403] train-mlogloss:0.427925 val-mlogloss:0.531224
[404] train-mlogloss:0.427748 val-mlogloss:0.531197
[405] train-mlogloss:0.427477 val-mlogloss:0.531145
[406] train-mlogloss:0.427241 val-mlogloss:0.531061
[407] train-mlogloss:0.427014 val-mlogloss:0.530999
[408] train-mlogloss:0.426737 val-mlogloss:0.530951
[409] train-mlogloss:0.42643 val-mlogloss:0.530932
[410] train-mlogloss:0.426211 val-mlogloss:0.530857
[411] train-mlogloss:0.426 val-mlogloss:0.530803
[412] train-mlogloss:0.425764 val-mlogloss:0.530812
[413] train-mlogloss:0.425485 val-mlogloss:0.530803
[414] train-mlogloss:0.425221 val-mlogloss:0.530776
[415] train-mlogloss:0.424929 val-mlogloss:0.530724
[416] train-mlogloss:0.424643 val-mlogloss:0.530668
[417] train-mlogloss:0.424395 val-mlogloss:0.530638
[418] train-mlogloss:0.424114 val-mlogloss:0.530589
[419] train-mlogloss:0.423875 val-mlogloss:0.530557
[420] train-mlogloss:0.423611 val-mlogloss:0.530491
[421] train-mlogloss:0.423391 val-mlogloss:0.530428
[422] train-mlogloss:0.423179 val-mlogloss:0.530417
[423] train-mlogloss:0.422859 val-mlogloss:0.530356
[424] train-mlogloss:0.42265 val-mlogloss:0.53039
[425] train-mlogloss:0.42245 val-mlogloss:0.530396
[426] train-mlogloss:0.422167 val-mlogloss:0.530328
[427] train-mlogloss:0.421945 val-mlogloss:0.53029
[428] train-mlogloss:0.421699 val-mlogloss:0.530295
[429] train-mlogloss:0.42149 val-mlogloss:0.530325
[430] train-mlogloss:0.421315 val-mlogloss:0.530313
[431] train-mlogloss:0.421081 val-mlogloss:0.530257
[432] train-mlogloss:0.42085 val-mlogloss:0.530195
[433] train-mlogloss:0.420592 val-mlogloss:0.530146
[434] train-mlogloss:0.420322 val-mlogloss:0.530138
[435] train-mlogloss:0.420116 val-mlogloss:0.530118
[436] train-mlogloss:0.419895 val-mlogloss:0.53007
[437] train-mlogloss:0.419656 val-mlogloss:0.530053
[438] train-mlogloss:0.419466 val-mlogloss:0.529988
[439] train-mlogloss:0.419183 val-mlogloss:0.529971
[440] train-mlogloss:0.418965 val-mlogloss:0.529948
[441] train-mlogloss:0.418652 val-mlogloss:0.52995
[442] train-mlogloss:0.418421 val-mlogloss:0.529898
[443] train-mlogloss:0.418236 val-mlogloss:0.529876
[444] train-mlogloss:0.418045 val-mlogloss:0.529858
[445] train-mlogloss:0.41777 val-mlogloss:0.529825
[446] train-mlogloss:0.417617 val-mlogloss:0.529808
[447] train-mlogloss:0.417418 val-mlogloss:0.529752
[448] train-mlogloss:0.417104 val-mlogloss:0.529708
[449] train-mlogloss:0.416898 val-mlogloss:0.529654
[450] train-mlogloss:0.416555 val-mlogloss:0.529603
[451] train-mlogloss:0.416242 val-mlogloss:0.529608
[452] train-mlogloss:0.415985 val-mlogloss:0.529566
[453] train-mlogloss:0.41573 val-mlogloss:0.529567
[454] train-mlogloss:0.415446 val-mlogloss:0.529488
[455] train-mlogloss:0.415187 val-mlogloss:0.529426
[456] train-mlogloss:0.414973 val-mlogloss:0.529409
[457] train-mlogloss:0.414722 val-mlogloss:0.529379
[458] train-mlogloss:0.414498 val-mlogloss:0.529347
[459] train-mlogloss:0.414288 val-mlogloss:0.529301
[460] train-mlogloss:0.414083 val-mlogloss:0.529275
[461] train-mlogloss:0.413868 val-mlogloss:0.529211
[462] train-mlogloss:0.413689 val-mlogloss:0.529174
[463] train-mlogloss:0.41341 val-mlogloss:0.529116
[464] train-mlogloss:0.413241 val-mlogloss:0.529088
[465] train-mlogloss:0.412978 val-mlogloss:0.529084
[466] train-mlogloss:0.412743 val-mlogloss:0.52907
[467] train-mlogloss:0.412511 val-mlogloss:0.528991
[468] train-mlogloss:0.412349 val-mlogloss:0.528974
[469] train-mlogloss:0.412121 val-mlogloss:0.528982
[470] train-mlogloss:0.411887 val-mlogloss:0.528972
[471] train-mlogloss:0.411673 val-mlogloss:0.528969
[472] train-mlogloss:0.411471 val-mlogloss:0.528946
[473] train-mlogloss:0.411297 val-mlogloss:0.528954
[474] train-mlogloss:0.411066 val-mlogloss:0.52893
[475] train-mlogloss:0.410841 val-mlogloss:0.528894
[476] train-mlogloss:0.41059 val-mlogloss:0.528882
[477] train-mlogloss:0.410415 val-mlogloss:0.528834
[478] train-mlogloss:0.410155 val-mlogloss:0.528776
[479] train-mlogloss:0.409929 val-mlogloss:0.528759
[480] train-mlogloss:0.409746 val-mlogloss:0.528743
[481] train-mlogloss:0.409562 val-mlogloss:0.528698
[482] train-mlogloss:0.409351 val-mlogloss:0.52869
[483] train-mlogloss:0.409104 val-mlogloss:0.528662
[484] train-mlogloss:0.408882 val-mlogloss:0.528625
[485] train-mlogloss:0.408685 val-mlogloss:0.528595
[486] train-mlogloss:0.408491 val-mlogloss:0.528585
[487] train-mlogloss:0.408216 val-mlogloss:0.528578
[488] train-mlogloss:0.408085 val-mlogloss:0.528576
[489] train-mlogloss:0.407798 val-mlogloss:0.528611
[490] train-mlogloss:0.40755 val-mlogloss:0.528598
[491] train-mlogloss:0.407273 val-mlogloss:0.528553
[492] train-mlogloss:0.406987 val-mlogloss:0.528504
[493] train-mlogloss:0.406744 val-mlogloss:0.52849
[494] train-mlogloss:0.406534 val-mlogloss:0.528486
[495] train-mlogloss:0.406293 val-mlogloss:0.528428
[496] train-mlogloss:0.406068 val-mlogloss:0.528394
[497] train-mlogloss:0.405844 val-mlogloss:0.528336
[498] train-mlogloss:0.405582 val-mlogloss:0.528255
[499] train-mlogloss:0.405353 val-mlogloss:0.528168
[500] train-mlogloss:0.405114 val-mlogloss:0.528138
[501] train-mlogloss:0.40481 val-mlogloss:0.528106
[502] train-mlogloss:0.404559 val-mlogloss:0.528078
[503] train-mlogloss:0.404336 val-mlogloss:0.528072
[504] train-mlogloss:0.404149 val-mlogloss:0.528018
[505] train-mlogloss:0.403971 val-mlogloss:0.527978
[506] train-mlogloss:0.403749 val-mlogloss:0.527919
[507] train-mlogloss:0.403526 val-mlogloss:0.527906
[508] train-mlogloss:0.403282 val-mlogloss:0.527876
[509] train-mlogloss:0.403125 val-mlogloss:0.527859
[510] train-mlogloss:0.402941 val-mlogloss:0.527808
[511] train-mlogloss:0.402718 val-mlogloss:0.527749
[512] train-mlogloss:0.402491 val-mlogloss:0.527726
[513] train-mlogloss:0.402277 val-mlogloss:0.527673
[514] train-mlogloss:0.402119 val-mlogloss:0.527656
[515] train-mlogloss:0.401897 val-mlogloss:0.527647
[516] train-mlogloss:0.401657 val-mlogloss:0.527619
[517] train-mlogloss:0.401458 val-mlogloss:0.527604
[518] train-mlogloss:0.401285 val-mlogloss:0.527573
[519] train-mlogloss:0.401086 val-mlogloss:0.527555
[520] train-mlogloss:0.400848 val-mlogloss:0.527529
[521] train-mlogloss:0.400619 val-mlogloss:0.527511
[522] train-mlogloss:0.400401 val-mlogloss:0.527526
[523] train-mlogloss:0.400092 val-mlogloss:0.527512
[524] train-mlogloss:0.399866 val-mlogloss:0.527458
[525] train-mlogloss:0.399638 val-mlogloss:0.527422
[526] train-mlogloss:0.39939 val-mlogloss:0.527391
[527] train-mlogloss:0.39923 val-mlogloss:0.527401
[528] train-mlogloss:0.398992 val-mlogloss:0.527358
[529] train-mlogloss:0.398817 val-mlogloss:0.527326
[530] train-mlogloss:0.398633 val-mlogloss:0.527309
[531] train-mlogloss:0.398441 val-mlogloss:0.527245
[532] train-mlogloss:0.398259 val-mlogloss:0.527207
[533] train-mlogloss:0.398026 val-mlogloss:0.527189
[534] train-mlogloss:0.397845 val-mlogloss:0.52718
[535] train-mlogloss:0.397635 val-mlogloss:0.527138
[536] train-mlogloss:0.397412 val-mlogloss:0.527097
[537] train-mlogloss:0.397213 val-mlogloss:0.527109
[538] train-mlogloss:0.397033 val-mlogloss:0.527091
[539] train-mlogloss:0.396801 val-mlogloss:0.527055
[540] train-mlogloss:0.396608 val-mlogloss:0.527026
[541] train-mlogloss:0.39645 val-mlogloss:0.527075
[542] train-mlogloss:0.396258 val-mlogloss:0.527002
[543] train-mlogloss:0.396116 val-mlogloss:0.526977
[544] train-mlogloss:0.395882 val-mlogloss:0.526989
[545] train-mlogloss:0.395652 val-mlogloss:0.526966
[546] train-mlogloss:0.395493 val-mlogloss:0.526924
[547] train-mlogloss:0.395286 val-mlogloss:0.526913
[548] train-mlogloss:0.395081 val-mlogloss:0.526899
[549] train-mlogloss:0.394807 val-mlogloss:0.526873
[550] train-mlogloss:0.394582 val-mlogloss:0.526808
[551] train-mlogloss:0.394384 val-mlogloss:0.526799
[552] train-mlogloss:0.394183 val-mlogloss:0.526742
[553] train-mlogloss:0.393957 val-mlogloss:0.526737
[554] train-mlogloss:0.393844 val-mlogloss:0.526707
[555] train-mlogloss:0.393643 val-mlogloss:0.526619
[556] train-mlogloss:0.393382 val-mlogloss:0.526569
[557] train-mlogloss:0.393209 val-mlogloss:0.526513
[558] train-mlogloss:0.393053 val-mlogloss:0.52649
[559] train-mlogloss:0.392836 val-mlogloss:0.526441
[560] train-mlogloss:0.392688 val-mlogloss:0.526411
[561] train-mlogloss:0.392496 val-mlogloss:0.526398
[562] train-mlogloss:0.392312 val-mlogloss:0.526366
[563] train-mlogloss:0.392132 val-mlogloss:0.526343
[564] train-mlogloss:0.391897 val-mlogloss:0.526349
[565] train-mlogloss:0.391734 val-mlogloss:0.52635
[566] train-mlogloss:0.391429 val-mlogloss:0.526352
[567] train-mlogloss:0.391241 val-mlogloss:0.526322
[568] train-mlogloss:0.391031 val-mlogloss:0.526281
[569] train-mlogloss:0.390791 val-mlogloss:0.526276
[570] train-mlogloss:0.390586 val-mlogloss:0.526203
[571] train-mlogloss:0.390344 val-mlogloss:0.526168
[572] train-mlogloss:0.390131 val-mlogloss:0.526191
[573] train-mlogloss:0.389906 val-mlogloss:0.526189
[574] train-mlogloss:0.389712 val-mlogloss:0.526151
[575] train-mlogloss:0.389538 val-mlogloss:0.526111
[576] train-mlogloss:0.38935 val-mlogloss:0.52612
[577] train-mlogloss:0.38919 val-mlogloss:0.526092
[578] train-mlogloss:0.388925 val-mlogloss:0.526055
[579] train-mlogloss:0.388643 val-mlogloss:0.52598
[580] train-mlogloss:0.388449 val-mlogloss:0.525958
[581] train-mlogloss:0.388257 val-mlogloss:0.525938
[582] train-mlogloss:0.388065 val-mlogloss:0.525928
[583] train-mlogloss:0.387837 val-mlogloss:0.525867
[584] train-mlogloss:0.387648 val-mlogloss:0.525859
[585] train-mlogloss:0.387398 val-mlogloss:0.525853
[586] train-mlogloss:0.387218 val-mlogloss:0.525862
[587] train-mlogloss:0.387074 val-mlogloss:0.525873
[588] train-mlogloss:0.386852 val-mlogloss:0.525863
[589] train-mlogloss:0.386617 val-mlogloss:0.525806
[590] train-mlogloss:0.38646 val-mlogloss:0.525814
[591] train-mlogloss:0.3862 val-mlogloss:0.525813
[592] train-mlogloss:0.386018 val-mlogloss:0.525743
[593] train-mlogloss:0.385854 val-mlogloss:0.525744
[594] train-mlogloss:0.385727 val-mlogloss:0.525706
[595] train-mlogloss:0.385483 val-mlogloss:0.525627
[596] train-mlogloss:0.385274 val-mlogloss:0.525606
[597] train-mlogloss:0.385099 val-mlogloss:0.525605
[598] train-mlogloss:0.38486 val-mlogloss:0.525594
[599] train-mlogloss:0.384618 val-mlogloss:0.525599
[600] train-mlogloss:0.384405 val-mlogloss:0.525566
[601] train-mlogloss:0.384178 val-mlogloss:0.525547
[602] train-mlogloss:0.383954 val-mlogloss:0.525522
[603] train-mlogloss:0.383812 val-mlogloss:0.525532
[604] train-mlogloss:0.383671 val-mlogloss:0.525547
[605] train-mlogloss:0.383479 val-mlogloss:0.525529
[606] train-mlogloss:0.383336 val-mlogloss:0.525518
[607] train-mlogloss:0.383046 val-mlogloss:0.5255
[608] train-mlogloss:0.382902 val-mlogloss:0.525502
[609] train-mlogloss:0.382703 val-mlogloss:0.525502
[610] train-mlogloss:0.382458 val-mlogloss:0.525489
[611] train-mlogloss:0.38217 val-mlogloss:0.525417
[612] train-mlogloss:0.381975 val-mlogloss:0.525396
[613] train-mlogloss:0.381809 val-mlogloss:0.525379
[614] train-mlogloss:0.381602 val-mlogloss:0.525385
[615] train-mlogloss:0.381417 val-mlogloss:0.525382
[616] train-mlogloss:0.381192 val-mlogloss:0.525373
[617] train-mlogloss:0.380953 val-mlogloss:0.525374
[618] train-mlogloss:0.38076 val-mlogloss:0.525351
[619] train-mlogloss:0.380557 val-mlogloss:0.525325
[620] train-mlogloss:0.380412 val-mlogloss:0.525325
[621] train-mlogloss:0.380303 val-mlogloss:0.525303
[622] train-mlogloss:0.380121 val-mlogloss:0.525246
[623] train-mlogloss:0.380011 val-mlogloss:0.525232
[624] train-mlogloss:0.379814 val-mlogloss:0.525236
[625] train-mlogloss:0.379549 val-mlogloss:0.525227
[626] train-mlogloss:0.379359 val-mlogloss:0.525202
[627] train-mlogloss:0.379182 val-mlogloss:0.525159
[628] train-mlogloss:0.378951 val-mlogloss:0.525135
[629] train-mlogloss:0.378801 val-mlogloss:0.525156
[630] train-mlogloss:0.378679 val-mlogloss:0.525157
[631] train-mlogloss:0.378469 val-mlogloss:0.525132
[632] train-mlogloss:0.378299 val-mlogloss:0.525101
[633] train-mlogloss:0.378054 val-mlogloss:0.525125
[634] train-mlogloss:0.377914 val-mlogloss:0.52509
[635] train-mlogloss:0.37771 val-mlogloss:0.525024
[636] train-mlogloss:0.377475 val-mlogloss:0.525027
[637] train-mlogloss:0.377267 val-mlogloss:0.524988
[638] train-mlogloss:0.377076 val-mlogloss:0.52492
[639] train-mlogloss:0.376935 val-mlogloss:0.524941
[640] train-mlogloss:0.376747 val-mlogloss:0.524934
[641] train-mlogloss:0.376554 val-mlogloss:0.52487
[642] train-mlogloss:0.376412 val-mlogloss:0.524875
[643] train-mlogloss:0.376152 val-mlogloss:0.524883
[644] train-mlogloss:0.375969 val-mlogloss:0.524844
[645] train-mlogloss:0.375764 val-mlogloss:0.524778
[646] train-mlogloss:0.375579 val-mlogloss:0.524743
[647] train-mlogloss:0.375416 val-mlogloss:0.524732
[648] train-mlogloss:0.37518 val-mlogloss:0.52466
[649] train-mlogloss:0.375055 val-mlogloss:0.524676
[650] train-mlogloss:0.374908 val-mlogloss:0.524631
[651] train-mlogloss:0.374776 val-mlogloss:0.524623
[652] train-mlogloss:0.374624 val-mlogloss:0.524599
[653] train-mlogloss:0.374369 val-mlogloss:0.524511
[654] train-mlogloss:0.374153 val-mlogloss:0.524528
[655] train-mlogloss:0.374046 val-mlogloss:0.524541
[656] train-mlogloss:0.37385 val-mlogloss:0.524535
[657] train-mlogloss:0.373621 val-mlogloss:0.524488
[658] train-mlogloss:0.373414 val-mlogloss:0.524443
[659] train-mlogloss:0.373268 val-mlogloss:0.524465
[660] train-mlogloss:0.373125 val-mlogloss:0.524475
[661] train-mlogloss:0.372899 val-mlogloss:0.524408
[662] train-mlogloss:0.372679 val-mlogloss:0.524396
[663] train-mlogloss:0.372486 val-mlogloss:0.52437
[664] train-mlogloss:0.372279 val-mlogloss:0.524376
[665] train-mlogloss:0.372108 val-mlogloss:0.524334
[666] train-mlogloss:0.371932 val-mlogloss:0.524345
[667] train-mlogloss:0.371669 val-mlogloss:0.524308
[668] train-mlogloss:0.371435 val-mlogloss:0.524289
[669] train-mlogloss:0.371251 val-mlogloss:0.524311
[670] train-mlogloss:0.371047 val-mlogloss:0.524291
[671] train-mlogloss:0.370853 val-mlogloss:0.52426
[672] train-mlogloss:0.370669 val-mlogloss:0.524288
[673] train-mlogloss:0.370513 val-mlogloss:0.524311
[674] train-mlogloss:0.370256 val-mlogloss:0.524243
[675] train-mlogloss:0.370065 val-mlogloss:0.524236
[676] train-mlogloss:0.369835 val-mlogloss:0.524239
[677] train-mlogloss:0.369686 val-mlogloss:0.524248
[678] train-mlogloss:0.369513 val-mlogloss:0.524225
[679] train-mlogloss:0.369305 val-mlogloss:0.524229
[680] train-mlogloss:0.369146 val-mlogloss:0.524233
[681] train-mlogloss:0.368977 val-mlogloss:0.524206
[682] train-mlogloss:0.368749 val-mlogloss:0.524171
[683] train-mlogloss:0.368533 val-mlogloss:0.52414
[684] train-mlogloss:0.368408 val-mlogloss:0.52413
[685] train-mlogloss:0.36818 val-mlogloss:0.524102
[686] train-mlogloss:0.368029 val-mlogloss:0.524073
[687] train-mlogloss:0.36782 val-mlogloss:0.524102
[688] train-mlogloss:0.367652 val-mlogloss:0.524064
[689] train-mlogloss:0.367422 val-mlogloss:0.524042
[690] train-mlogloss:0.367188 val-mlogloss:0.524025
[691] train-mlogloss:0.366962 val-mlogloss:0.523989
[692] train-mlogloss:0.366789 val-mlogloss:0.523997
[693] train-mlogloss:0.366613 val-mlogloss:0.523995
[694] train-mlogloss:0.3664 val-mlogloss:0.52399
[695] train-mlogloss:0.366185 val-mlogloss:0.523968
[696] train-mlogloss:0.36603 val-mlogloss:0.523936
[697] train-mlogloss:0.365794 val-mlogloss:0.523942
[698] train-mlogloss:0.365618 val-mlogloss:0.523938
[699] train-mlogloss:0.365403 val-mlogloss:0.523943
[700] train-mlogloss:0.365215 val-mlogloss:0.52391
[701] train-mlogloss:0.365009 val-mlogloss:0.52388
[702] train-mlogloss:0.364834 val-mlogloss:0.523856
[703] train-mlogloss:0.364674 val-mlogloss:0.523865
[704] train-mlogloss:0.364503 val-mlogloss:0.523872
[705] train-mlogloss:0.364338 val-mlogloss:0.523879
[706] train-mlogloss:0.3641 val-mlogloss:0.5239
[707] train-mlogloss:0.363959 val-mlogloss:0.52389
[708] train-mlogloss:0.363772 val-mlogloss:0.523913
[709] train-mlogloss:0.363512 val-mlogloss:0.523931
[710] train-mlogloss:0.363417 val-mlogloss:0.52393
[711] train-mlogloss:0.363217 val-mlogloss:0.52391
[712] train-mlogloss:0.363101 val-mlogloss:0.523878
[713] train-mlogloss:0.362919 val-mlogloss:0.523827
[714] train-mlogloss:0.362759 val-mlogloss:0.52384
[715] train-mlogloss:0.36256 val-mlogloss:0.523836
[716] train-mlogloss:0.362378 val-mlogloss:0.523789
[717] train-mlogloss:0.362146 val-mlogloss:0.523781
[718] train-mlogloss:0.361999 val-mlogloss:0.523797
[719] train-mlogloss:0.361766 val-mlogloss:0.523805
[720] train-mlogloss:0.361568 val-mlogloss:0.523776
[721] train-mlogloss:0.361455 val-mlogloss:0.523782
[722] train-mlogloss:0.361307 val-mlogloss:0.523762
[723] train-mlogloss:0.361064 val-mlogloss:0.523755
[724] train-mlogloss:0.360922 val-mlogloss:0.523767
[725] train-mlogloss:0.360729 val-mlogloss:0.523752
[726] train-mlogloss:0.360607 val-mlogloss:0.523737
[727] train-mlogloss:0.360432 val-mlogloss:0.523728
[728] train-mlogloss:0.360268 val-mlogloss:0.523708
[729] train-mlogloss:0.360057 val-mlogloss:0.523682
[730] train-mlogloss:0.359905 val-mlogloss:0.523674
[731] train-mlogloss:0.359722 val-mlogloss:0.523653
[732] train-mlogloss:0.35954 val-mlogloss:0.523631
[733] train-mlogloss:0.359365 val-mlogloss:0.523615
[734] train-mlogloss:0.359199 val-mlogloss:0.523593
[735] train-mlogloss:0.359013 val-mlogloss:0.523575
[736] train-mlogloss:0.358796 val-mlogloss:0.523542
[737] train-mlogloss:0.358611 val-mlogloss:0.523497
[738] train-mlogloss:0.35842 val-mlogloss:0.5235
[739] train-mlogloss:0.35823 val-mlogloss:0.523498
[740] train-mlogloss:0.358086 val-mlogloss:0.523499
[741] train-mlogloss:0.357912 val-mlogloss:0.523516
[742] train-mlogloss:0.357789 val-mlogloss:0.523504
[743] train-mlogloss:0.357636 val-mlogloss:0.52351
[744] train-mlogloss:0.357457 val-mlogloss:0.523539
[745] train-mlogloss:0.357272 val-mlogloss:0.523538
[746] train-mlogloss:0.357107 val-mlogloss:0.523541
[747] train-mlogloss:0.356867 val-mlogloss:0.523546
[748] train-mlogloss:0.3567 val-mlogloss:0.523564
[749] train-mlogloss:0.356503 val-mlogloss:0.523573
[750] train-mlogloss:0.356371 val-mlogloss:0.523534
[751] train-mlogloss:0.356266 val-mlogloss:0.52354
[752] train-mlogloss:0.356061 val-mlogloss:0.523485
[753] train-mlogloss:0.355897 val-mlogloss:0.5235
[754] train-mlogloss:0.355704 val-mlogloss:0.523533
[755] train-mlogloss:0.355526 val-mlogloss:0.523529
[756] train-mlogloss:0.355383 val-mlogloss:0.523532
[757] train-mlogloss:0.355153 val-mlogloss:0.5235
[758] train-mlogloss:0.355072 val-mlogloss:0.523504
[759] train-mlogloss:0.354937 val-mlogloss:0.523462
[760] train-mlogloss:0.354807 val-mlogloss:0.523458
[761] train-mlogloss:0.354701 val-mlogloss:0.52346
[762] train-mlogloss:0.354551 val-mlogloss:0.523457
[763] train-mlogloss:0.354352 val-mlogloss:0.523443
[764] train-mlogloss:0.354162 val-mlogloss:0.523433
[765] train-mlogloss:0.353938 val-mlogloss:0.523396
[766] train-mlogloss:0.353779 val-mlogloss:0.523397
[767] train-mlogloss:0.353593 val-mlogloss:0.523403
[768] train-mlogloss:0.353433 val-mlogloss:0.523404
[769] train-mlogloss:0.353226 val-mlogloss:0.523345
[770] train-mlogloss:0.353066 val-mlogloss:0.523342
[771] train-mlogloss:0.352944 val-mlogloss:0.523383
[772] train-mlogloss:0.352773 val-mlogloss:0.523393
[773] train-mlogloss:0.352574 val-mlogloss:0.5234
[774] train-mlogloss:0.352416 val-mlogloss:0.523409
[775] train-mlogloss:0.35225 val-mlogloss:0.523392
[776] train-mlogloss:0.3521 val-mlogloss:0.523408
[777] train-mlogloss:0.351972 val-mlogloss:0.523406
[778] train-mlogloss:0.35179 val-mlogloss:0.523377
[779] train-mlogloss:0.351572 val-mlogloss:0.523351
[780] train-mlogloss:0.351361 val-mlogloss:0.52334
[781] train-mlogloss:0.351168 val-mlogloss:0.523309
[782] train-mlogloss:0.350993 val-mlogloss:0.523334
[783] train-mlogloss:0.350819 val-mlogloss:0.523338
[784] train-mlogloss:0.350615 val-mlogloss:0.523344
[785] train-mlogloss:0.3504 val-mlogloss:0.523372
[786] train-mlogloss:0.350234 val-mlogloss:0.523382
[787] train-mlogloss:0.350087 val-mlogloss:0.523383
[788] train-mlogloss:0.349914 val-mlogloss:0.523383
[789] train-mlogloss:0.349769 val-mlogloss:0.523398
[790] train-mlogloss:0.349541 val-mlogloss:0.523437
[791] train-mlogloss:0.349396 val-mlogloss:0.523431
[792] train-mlogloss:0.349209 val-mlogloss:0.523434
[793] train-mlogloss:0.349053 val-mlogloss:0.523419
[794] train-mlogloss:0.348905 val-mlogloss:0.523401
[795] train-mlogloss:0.348702 val-mlogloss:0.523373
[796] train-mlogloss:0.348557 val-mlogloss:0.523318
[797] train-mlogloss:0.348373 val-mlogloss:0.523317
[798] train-mlogloss:0.348187 val-mlogloss:0.523313
[799] train-mlogloss:0.348008 val-mlogloss:0.52329
[800] train-mlogloss:0.347869 val-mlogloss:0.523284
[801] train-mlogloss:0.347708 val-mlogloss:0.52328
[802] train-mlogloss:0.347545 val-mlogloss:0.523307
[803] train-mlogloss:0.347422 val-mlogloss:0.523282
[804] train-mlogloss:0.347309 val-mlogloss:0.52327
[805] train-mlogloss:0.347186 val-mlogloss:0.523286
[806] train-mlogloss:0.34704 val-mlogloss:0.523284
[807] train-mlogloss:0.346885 val-mlogloss:0.523294
[808] train-mlogloss:0.34676 val-mlogloss:0.523258
[809] train-mlogloss:0.346605 val-mlogloss:0.523268
[810] train-mlogloss:0.346444 val-mlogloss:0.523305
[811] train-mlogloss:0.346237 val-mlogloss:0.523309
[812] train-mlogloss:0.346062 val-mlogloss:0.523282
[813] train-mlogloss:0.345885 val-mlogloss:0.523256
[814] train-mlogloss:0.345722 val-mlogloss:0.523252
[815] train-mlogloss:0.345582 val-mlogloss:0.523265
[816] train-mlogloss:0.345406 val-mlogloss:0.523257
[817] train-mlogloss:0.34522 val-mlogloss:0.523215
[818] train-mlogloss:0.345029 val-mlogloss:0.523199
[819] train-mlogloss:0.344815 val-mlogloss:0.523195
[820] train-mlogloss:0.344627 val-mlogloss:0.523149
[821] train-mlogloss:0.344451 val-mlogloss:0.523176
[822] train-mlogloss:0.344286 val-mlogloss:0.523143
[823] train-mlogloss:0.344168 val-mlogloss:0.523117
[824] train-mlogloss:0.34405 val-mlogloss:0.523096
[825] train-mlogloss:0.343914 val-mlogloss:0.523095
[826] train-mlogloss:0.343756 val-mlogloss:0.523072
[827] train-mlogloss:0.343568 val-mlogloss:0.523085
[828] train-mlogloss:0.343444 val-mlogloss:0.523087
[829] train-mlogloss:0.34332 val-mlogloss:0.523075
[830] train-mlogloss:0.343225 val-mlogloss:0.523055
[831] train-mlogloss:0.343039 val-mlogloss:0.52305
[832] train-mlogloss:0.342854 val-mlogloss:0.523085
[833] train-mlogloss:0.342719 val-mlogloss:0.523092
[834] train-mlogloss:0.342519 val-mlogloss:0.52306
[835] train-mlogloss:0.342354 val-mlogloss:0.523065
[836] train-mlogloss:0.342209 val-mlogloss:0.523067
[837] train-mlogloss:0.342027 val-mlogloss:0.523011
[838] train-mlogloss:0.34187 val-mlogloss:0.523017
[839] train-mlogloss:0.34173 val-mlogloss:0.523026
[840] train-mlogloss:0.341499 val-mlogloss:0.523044
[841] train-mlogloss:0.34135 val-mlogloss:0.523059
[842] train-mlogloss:0.341207 val-mlogloss:0.523048
[843] train-mlogloss:0.341056 val-mlogloss:0.523046
[844] train-mlogloss:0.340943 val-mlogloss:0.523037
[845] train-mlogloss:0.34078 val-mlogloss:0.523023
[846] train-mlogloss:0.340651 val-mlogloss:0.523037
[847] train-mlogloss:0.340508 val-mlogloss:0.523051
[848] train-mlogloss:0.340375 val-mlogloss:0.523032
[849] train-mlogloss:0.340164 val-mlogloss:0.522985
[850] train-mlogloss:0.339945 val-mlogloss:0.522923
[851] train-mlogloss:0.339745 val-mlogloss:0.522925
[852] train-mlogloss:0.339524 val-mlogloss:0.522907
[853] train-mlogloss:0.339394 val-mlogloss:0.522922
[854] train-mlogloss:0.339256 val-mlogloss:0.522933
[855] train-mlogloss:0.339093 val-mlogloss:0.522914
[856] train-mlogloss:0.338937 val-mlogloss:0.522909
[857] train-mlogloss:0.338763 val-mlogloss:0.522863
[858] train-mlogloss:0.338585 val-mlogloss:0.522859
[859] train-mlogloss:0.338406 val-mlogloss:0.522886
[860] train-mlogloss:0.338228 val-mlogloss:0.522889
[861] train-mlogloss:0.338095 val-mlogloss:0.522896
[862] train-mlogloss:0.337953 val-mlogloss:0.522874
[863] train-mlogloss:0.337752 val-mlogloss:0.52286
[864] train-mlogloss:0.337593 val-mlogloss:0.522829
[865] train-mlogloss:0.337405 val-mlogloss:0.522804
[866] train-mlogloss:0.337231 val-mlogloss:0.522808
[867] train-mlogloss:0.337117 val-mlogloss:0.522804
[868] train-mlogloss:0.336964 val-mlogloss:0.522855
[869] train-mlogloss:0.336824 val-mlogloss:0.522847
[870] train-mlogloss:0.336689 val-mlogloss:0.522864
[871] train-mlogloss:0.336514 val-mlogloss:0.522887
[872] train-mlogloss:0.336291 val-mlogloss:0.522927
[873] train-mlogloss:0.336134 val-mlogloss:0.522902
[874] train-mlogloss:0.335983 val-mlogloss:0.522891
[875] train-mlogloss:0.335821 val-mlogloss:0.522886
[876] train-mlogloss:0.335676 val-mlogloss:0.522897
[877] train-mlogloss:0.335514 val-mlogloss:0.522909
[878] train-mlogloss:0.335382 val-mlogloss:0.522913
[879] train-mlogloss:0.335245 val-mlogloss:0.522932
[880] train-mlogloss:0.335035 val-mlogloss:0.522914
[881] train-mlogloss:0.334899 val-mlogloss:0.522914
[882] train-mlogloss:0.334784 val-mlogloss:0.522899
[883] train-mlogloss:0.334605 val-mlogloss:0.522893
[884] train-mlogloss:0.334431 val-mlogloss:0.52288
[885] train-mlogloss:0.334255 val-mlogloss:0.522915
[886] train-mlogloss:0.334076 val-mlogloss:0.522914
[887] train-mlogloss:0.333908 val-mlogloss:0.522885
[888] train-mlogloss:0.33372 val-mlogloss:0.52287
[889] train-mlogloss:0.333555 val-mlogloss:0.522884
[890] train-mlogloss:0.333378 val-mlogloss:0.522902
[891] train-mlogloss:0.333235 val-mlogloss:0.522946
[892] train-mlogloss:0.33305 val-mlogloss:0.522927
[893] train-mlogloss:0.332887 val-mlogloss:0.522915
[894] train-mlogloss:0.33272 val-mlogloss:0.522928
[895] train-mlogloss:0.332567 val-mlogloss:0.522931
[896] train-mlogloss:0.332443 val-mlogloss:0.522911
[897] train-mlogloss:0.332324 val-mlogloss:0.522919
[898] train-mlogloss:0.332121 val-mlogloss:0.522884
[899] train-mlogloss:0.331961 val-mlogloss:0.522859
[900] train-mlogloss:0.331842 val-mlogloss:0.522851
[901] train-mlogloss:0.331648 val-mlogloss:0.522883
[902] train-mlogloss:0.331474 val-mlogloss:0.522855
[903] train-mlogloss:0.331273 val-mlogloss:0.522898
[904] train-mlogloss:0.331089 val-mlogloss:0.522878
[905] train-mlogloss:0.330961 val-mlogloss:0.522882
[906] train-mlogloss:0.330827 val-mlogloss:0.522893
[907] train-mlogloss:0.330636 val-mlogloss:0.522899
[908] train-mlogloss:0.330424 val-mlogloss:0.522862
[909] train-mlogloss:0.330288 val-mlogloss:0.522865
[910] train-mlogloss:0.330196 val-mlogloss:0.522886
[911] train-mlogloss:0.330057 val-mlogloss:0.522894
[912] train-mlogloss:0.329876 val-mlogloss:0.522889
[913] train-mlogloss:0.329669 val-mlogloss:0.52291
[914] train-mlogloss:0.329537 val-mlogloss:0.522908
[915] train-mlogloss:0.32941 val-mlogloss:0.522892
Stopping. Best iteration:
[865] train-mlogloss:0.337405 val-mlogloss:0.522804
[0] train-mlogloss:1.07785 val-mlogloss:1.07825
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.
Will train until val-mlogloss hasn't improved in 50 rounds.
[1] train-mlogloss:1.0582 val-mlogloss:1.05903
[2] train-mlogloss:1.03946 val-mlogloss:1.04071
[3] train-mlogloss:1.02154 val-mlogloss:1.02319
[4] train-mlogloss:1.00437 val-mlogloss:1.00642
[5] train-mlogloss:0.987855 val-mlogloss:0.990305
[6] train-mlogloss:0.972221 val-mlogloss:0.975104
[7] train-mlogloss:0.957366 val-mlogloss:0.960616
[8] train-mlogloss:0.943297 val-mlogloss:0.946981
[9] train-mlogloss:0.929506 val-mlogloss:0.933642
[10] train-mlogloss:0.916266 val-mlogloss:0.920858
[11] train-mlogloss:0.903524 val-mlogloss:0.908541
[12] train-mlogloss:0.891404 val-mlogloss:0.896886
[13] train-mlogloss:0.879722 val-mlogloss:0.885705
[14] train-mlogloss:0.8689 val-mlogloss:0.875322
[15] train-mlogloss:0.858222 val-mlogloss:0.864991
[16] train-mlogloss:0.847995 val-mlogloss:0.855176
[17] train-mlogloss:0.838038 val-mlogloss:0.84568
[18] train-mlogloss:0.828382 val-mlogloss:0.836429
[19] train-mlogloss:0.819163 val-mlogloss:0.827621
[20] train-mlogloss:0.810383 val-mlogloss:0.819255
[21] train-mlogloss:0.801857 val-mlogloss:0.811102
[22] train-mlogloss:0.793707 val-mlogloss:0.80333
[23] train-mlogloss:0.785836 val-mlogloss:0.795771
[24] train-mlogloss:0.778428 val-mlogloss:0.788722
[25] train-mlogloss:0.771093 val-mlogloss:0.781718
[26] train-mlogloss:0.763979 val-mlogloss:0.774973
[27] train-mlogloss:0.757088 val-mlogloss:0.768487
[28] train-mlogloss:0.750398 val-mlogloss:0.762178
[29] train-mlogloss:0.743901 val-mlogloss:0.75604
[30] train-mlogloss:0.737662 val-mlogloss:0.750153
[31] train-mlogloss:0.731693 val-mlogloss:0.74453
[32] train-mlogloss:0.725852 val-mlogloss:0.738958
[33] train-mlogloss:0.720252 val-mlogloss:0.733735
[34] train-mlogloss:0.714827 val-mlogloss:0.728684
[35] train-mlogloss:0.709578 val-mlogloss:0.723759
[36] train-mlogloss:0.704497 val-mlogloss:0.718999
[37] train-mlogloss:0.699626 val-mlogloss:0.714491
[38] train-mlogloss:0.694773 val-mlogloss:0.710037
[39] train-mlogloss:0.690238 val-mlogloss:0.70579
[40] train-mlogloss:0.685813 val-mlogloss:0.701629
[41] train-mlogloss:0.681533 val-mlogloss:0.697623
[42] train-mlogloss:0.677345 val-mlogloss:0.693759
[43] train-mlogloss:0.673366 val-mlogloss:0.690083
[44] train-mlogloss:0.669395 val-mlogloss:0.686464
[45] train-mlogloss:0.665575 val-mlogloss:0.682988
[46] train-mlogloss:0.661837 val-mlogloss:0.679562
[47] train-mlogloss:0.658217 val-mlogloss:0.676277
[48] train-mlogloss:0.65475 val-mlogloss:0.673134
[49] train-mlogloss:0.651412 val-mlogloss:0.670106
[50] train-mlogloss:0.648128 val-mlogloss:0.667196
[51] train-mlogloss:0.644857 val-mlogloss:0.664234
[52] train-mlogloss:0.641723 val-mlogloss:0.661384
[53] train-mlogloss:0.638677 val-mlogloss:0.658674
[54] train-mlogloss:0.635725 val-mlogloss:0.656072
[55] train-mlogloss:0.632872 val-mlogloss:0.653521
[56] train-mlogloss:0.630086 val-mlogloss:0.650979
[57] train-mlogloss:0.627273 val-mlogloss:0.648463
[58] train-mlogloss:0.624551 val-mlogloss:0.646015
[59] train-mlogloss:0.62197 val-mlogloss:0.643723
[60] train-mlogloss:0.61944 val-mlogloss:0.641483
[61] train-mlogloss:0.616964 val-mlogloss:0.639327
[62] train-mlogloss:0.614619 val-mlogloss:0.637322
[63] train-mlogloss:0.612233 val-mlogloss:0.635285
[64] train-mlogloss:0.609922 val-mlogloss:0.633292
[65] train-mlogloss:0.607697 val-mlogloss:0.631391
[66] train-mlogloss:0.605498 val-mlogloss:0.629606
[67] train-mlogloss:0.603355 val-mlogloss:0.627792
[68] train-mlogloss:0.601346 val-mlogloss:0.626151
[69] train-mlogloss:0.599292 val-mlogloss:0.62445
[70] train-mlogloss:0.597326 val-mlogloss:0.622801
[71] train-mlogloss:0.595447 val-mlogloss:0.621207
[72] train-mlogloss:0.593632 val-mlogloss:0.619683
[73] train-mlogloss:0.591846 val-mlogloss:0.618164
[74] train-mlogloss:0.590101 val-mlogloss:0.616719
[75] train-mlogloss:0.588289 val-mlogloss:0.615183
[76] train-mlogloss:0.586602 val-mlogloss:0.613799
[77] train-mlogloss:0.584893 val-mlogloss:0.61237
[78] train-mlogloss:0.583316 val-mlogloss:0.611039
[79] train-mlogloss:0.581734 val-mlogloss:0.609774
[80] train-mlogloss:0.580268 val-mlogloss:0.608554
[81] train-mlogloss:0.578785 val-mlogloss:0.607345
[82] train-mlogloss:0.577278 val-mlogloss:0.606117
[83] train-mlogloss:0.575804 val-mlogloss:0.604974
[84] train-mlogloss:0.574357 val-mlogloss:0.60382
[85] train-mlogloss:0.572941 val-mlogloss:0.602667
[86] train-mlogloss:0.571605 val-mlogloss:0.60161
[87] train-mlogloss:0.570198 val-mlogloss:0.600547
[88] train-mlogloss:0.568929 val-mlogloss:0.599592
[89] train-mlogloss:0.567643 val-mlogloss:0.598599
[90] train-mlogloss:0.566372 val-mlogloss:0.59768
[91] train-mlogloss:0.565085 val-mlogloss:0.596689
[92] train-mlogloss:0.563884 val-mlogloss:0.59582
[93] train-mlogloss:0.562644 val-mlogloss:0.594855
[94] train-mlogloss:0.561561 val-mlogloss:0.594006
[95] train-mlogloss:0.560391 val-mlogloss:0.593116
[96] train-mlogloss:0.559274 val-mlogloss:0.59229
[97] train-mlogloss:0.558084 val-mlogloss:0.591398
[98] train-mlogloss:0.556943 val-mlogloss:0.590538
[99] train-mlogloss:0.555858 val-mlogloss:0.589803
[100] train-mlogloss:0.554837 val-mlogloss:0.589035
[101] train-mlogloss:0.553805 val-mlogloss:0.58836
[102] train-mlogloss:0.552648 val-mlogloss:0.587532
[103] train-mlogloss:0.551648 val-mlogloss:0.586783
[104] train-mlogloss:0.550663 val-mlogloss:0.586083
[105] train-mlogloss:0.549617 val-mlogloss:0.585348
[106] train-mlogloss:0.54865 val-mlogloss:0.584681
[107] train-mlogloss:0.547785 val-mlogloss:0.584105
[108] train-mlogloss:0.546879 val-mlogloss:0.583442
[109] train-mlogloss:0.545901 val-mlogloss:0.58276
[110] train-mlogloss:0.544986 val-mlogloss:0.582161
[111] train-mlogloss:0.544139 val-mlogloss:0.581622
[112] train-mlogloss:0.543167 val-mlogloss:0.580955
[113] train-mlogloss:0.542304 val-mlogloss:0.58035
[114] train-mlogloss:0.541369 val-mlogloss:0.57978
[115] train-mlogloss:0.540522 val-mlogloss:0.579216
[116] train-mlogloss:0.539658 val-mlogloss:0.578638
[117] train-mlogloss:0.538679 val-mlogloss:0.578041
[118] train-mlogloss:0.537863 val-mlogloss:0.577519
[119] train-mlogloss:0.537107 val-mlogloss:0.576979
[120] train-mlogloss:0.536314 val-mlogloss:0.576421
[121] train-mlogloss:0.535567 val-mlogloss:0.575928
[122] train-mlogloss:0.534803 val-mlogloss:0.575442
[123] train-mlogloss:0.534078 val-mlogloss:0.574993
[124] train-mlogloss:0.533389 val-mlogloss:0.574526
[125] train-mlogloss:0.532703 val-mlogloss:0.574091
[126] train-mlogloss:0.532017 val-mlogloss:0.573663
[127] train-mlogloss:0.531309 val-mlogloss:0.573253
[128] train-mlogloss:0.53063 val-mlogloss:0.572846
[129] train-mlogloss:0.529968 val-mlogloss:0.572415
[130] train-mlogloss:0.529335 val-mlogloss:0.572049
[131] train-mlogloss:0.528685 val-mlogloss:0.571711
[132] train-mlogloss:0.528061 val-mlogloss:0.571366
[133] train-mlogloss:0.527301 val-mlogloss:0.570923
[134] train-mlogloss:0.526539 val-mlogloss:0.570497
[135] train-mlogloss:0.525815 val-mlogloss:0.570027
[136] train-mlogloss:0.525122 val-mlogloss:0.569657
[137] train-mlogloss:0.524489 val-mlogloss:0.569284
[138] train-mlogloss:0.523731 val-mlogloss:0.568811
[139] train-mlogloss:0.522972 val-mlogloss:0.56842
[140] train-mlogloss:0.5223 val-mlogloss:0.568048
[141] train-mlogloss:0.521723 val-mlogloss:0.567638
[142] train-mlogloss:0.521182 val-mlogloss:0.567328
[143] train-mlogloss:0.52058 val-mlogloss:0.566909
[144] train-mlogloss:0.520076 val-mlogloss:0.566641
[145] train-mlogloss:0.519462 val-mlogloss:0.566317
[146] train-mlogloss:0.518859 val-mlogloss:0.565986
[147] train-mlogloss:0.518194 val-mlogloss:0.565587
[148] train-mlogloss:0.51744 val-mlogloss:0.565218
[149] train-mlogloss:0.516725 val-mlogloss:0.564843
[150] train-mlogloss:0.516055 val-mlogloss:0.564456
[151] train-mlogloss:0.515416 val-mlogloss:0.56407
[152] train-mlogloss:0.514901 val-mlogloss:0.563762
[153] train-mlogloss:0.514311 val-mlogloss:0.563434
[154] train-mlogloss:0.513734 val-mlogloss:0.563169
[155] train-mlogloss:0.513167 val-mlogloss:0.562879
[156] train-mlogloss:0.512589 val-mlogloss:0.562547
[157] train-mlogloss:0.511944 val-mlogloss:0.562145
[158] train-mlogloss:0.51138 val-mlogloss:0.561897
[159] train-mlogloss:0.510808 val-mlogloss:0.561551
[160] train-mlogloss:0.510272 val-mlogloss:0.561292
[161] train-mlogloss:0.509834 val-mlogloss:0.56101
[162] train-mlogloss:0.509298 val-mlogloss:0.560671
[163] train-mlogloss:0.50881 val-mlogloss:0.560378
[164] train-mlogloss:0.508305 val-mlogloss:0.56017
[165] train-mlogloss:0.507741 val-mlogloss:0.55989
[166] train-mlogloss:0.507189 val-mlogloss:0.559571
[167] train-mlogloss:0.506647 val-mlogloss:0.559371
[168] train-mlogloss:0.506029 val-mlogloss:0.558949
[169] train-mlogloss:0.505543 val-mlogloss:0.558686
[170] train-mlogloss:0.505113 val-mlogloss:0.558437
[171] train-mlogloss:0.504671 val-mlogloss:0.558226
[172] train-mlogloss:0.504233 val-mlogloss:0.558007
[173] train-mlogloss:0.503679 val-mlogloss:0.557749
[174] train-mlogloss:0.503192 val-mlogloss:0.557459
[175] train-mlogloss:0.502703 val-mlogloss:0.557235
[176] train-mlogloss:0.502156 val-mlogloss:0.557024
[177] train-mlogloss:0.501658 val-mlogloss:0.556775
[178] train-mlogloss:0.501222 val-mlogloss:0.556531
[179] train-mlogloss:0.500667 val-mlogloss:0.55634
[180] train-mlogloss:0.500342 val-mlogloss:0.55616
[181] train-mlogloss:0.499914 val-mlogloss:0.555947
[182] train-mlogloss:0.499343 val-mlogloss:0.555745
[183] train-mlogloss:0.498898 val-mlogloss:0.555535
[184] train-mlogloss:0.49826 val-mlogloss:0.555282
[185] train-mlogloss:0.497954 val-mlogloss:0.555067
[186] train-mlogloss:0.49751 val-mlogloss:0.554851
[187] train-mlogloss:0.49703 val-mlogloss:0.554695
[188] train-mlogloss:0.496589 val-mlogloss:0.554523
[189] train-mlogloss:0.495993 val-mlogloss:0.554334
[190] train-mlogloss:0.495666 val-mlogloss:0.554193
[191] train-mlogloss:0.495252 val-mlogloss:0.554002
[192] train-mlogloss:0.494855 val-mlogloss:0.55381
[193] train-mlogloss:0.494441 val-mlogloss:0.553616
[194] train-mlogloss:0.494088 val-mlogloss:0.55348
[195] train-mlogloss:0.493671 val-mlogloss:0.553313
[196] train-mlogloss:0.493239 val-mlogloss:0.553137
[197] train-mlogloss:0.49268 val-mlogloss:0.552878
[198] train-mlogloss:0.492216 val-mlogloss:0.552693
[199] train-mlogloss:0.49184 val-mlogloss:0.552551
[200] train-mlogloss:0.491429 val-mlogloss:0.552429
[201] train-mlogloss:0.490851 val-mlogloss:0.552207
[202] train-mlogloss:0.490464 val-mlogloss:0.552086
[203] train-mlogloss:0.489891 val-mlogloss:0.551866
[204] train-mlogloss:0.489437 val-mlogloss:0.551619
[205] train-mlogloss:0.488978 val-mlogloss:0.55144
[206] train-mlogloss:0.488494 val-mlogloss:0.551249
[207] train-mlogloss:0.488092 val-mlogloss:0.551073
[208] train-mlogloss:0.487638 val-mlogloss:0.550952
[209] train-mlogloss:0.487065 val-mlogloss:0.550739
[210] train-mlogloss:0.486616 val-mlogloss:0.55058
[211] train-mlogloss:0.48622 val-mlogloss:0.55042
[212] train-mlogloss:0.485853 val-mlogloss:0.5503
[213] train-mlogloss:0.485378 val-mlogloss:0.550088
[214] train-mlogloss:0.485036 val-mlogloss:0.549964
[215] train-mlogloss:0.484552 val-mlogloss:0.549798
[216] train-mlogloss:0.484269 val-mlogloss:0.54968
[217] train-mlogloss:0.483891 val-mlogloss:0.549583
[218] train-mlogloss:0.48347 val-mlogloss:0.549424
[219] train-mlogloss:0.483091 val-mlogloss:0.549273
[220] train-mlogloss:0.482798 val-mlogloss:0.54916
[221] train-mlogloss:0.482357 val-mlogloss:0.549014
[222] train-mlogloss:0.48193 val-mlogloss:0.548858
[223] train-mlogloss:0.481492 val-mlogloss:0.54869
[224] train-mlogloss:0.480971 val-mlogloss:0.548494
[225] train-mlogloss:0.480581 val-mlogloss:0.548341
[226] train-mlogloss:0.480097 val-mlogloss:0.548211
[227] train-mlogloss:0.479648 val-mlogloss:0.548091
[228] train-mlogloss:0.47921 val-mlogloss:0.547966
[229] train-mlogloss:0.478926 val-mlogloss:0.547817
[230] train-mlogloss:0.478524 val-mlogloss:0.547653
[231] train-mlogloss:0.478152 val-mlogloss:0.54751
[232] train-mlogloss:0.477809 val-mlogloss:0.54737
[233] train-mlogloss:0.477444 val-mlogloss:0.547203
[234] train-mlogloss:0.477026 val-mlogloss:0.54705
[235] train-mlogloss:0.476673 val-mlogloss:0.546912
[236] train-mlogloss:0.47627 val-mlogloss:0.546745
[237] train-mlogloss:0.47585 val-mlogloss:0.546651
[238] train-mlogloss:0.475429 val-mlogloss:0.546494
[239] train-mlogloss:0.47509 val-mlogloss:0.546328
[240] train-mlogloss:0.474733 val-mlogloss:0.546159
[241] train-mlogloss:0.474366 val-mlogloss:0.546064
[242] train-mlogloss:0.473955 val-mlogloss:0.545925
[243] train-mlogloss:0.473698 val-mlogloss:0.545821
[244] train-mlogloss:0.473255 val-mlogloss:0.545753
[245] train-mlogloss:0.473001 val-mlogloss:0.545607
[246] train-mlogloss:0.472593 val-mlogloss:0.545528
[247] train-mlogloss:0.472184 val-mlogloss:0.545423
[248] train-mlogloss:0.47187 val-mlogloss:0.545307
[249] train-mlogloss:0.47159 val-mlogloss:0.545226
[250] train-mlogloss:0.471295 val-mlogloss:0.545095
[251] train-mlogloss:0.47101 val-mlogloss:0.544998
[252] train-mlogloss:0.470636 val-mlogloss:0.544832
[253] train-mlogloss:0.47021 val-mlogloss:0.544694
[254] train-mlogloss:0.469853 val-mlogloss:0.54461
[255] train-mlogloss:0.469462 val-mlogloss:0.544507
[256] train-mlogloss:0.46914 val-mlogloss:0.544413
[257] train-mlogloss:0.468804 val-mlogloss:0.544286
[258] train-mlogloss:0.468397 val-mlogloss:0.544181
[259] train-mlogloss:0.468127 val-mlogloss:0.544077
[260] train-mlogloss:0.467721 val-mlogloss:0.543944
[261] train-mlogloss:0.467431 val-mlogloss:0.543861
[262] train-mlogloss:0.467097 val-mlogloss:0.543734
[263] train-mlogloss:0.466649 val-mlogloss:0.54362
[264] train-mlogloss:0.466319 val-mlogloss:0.543565
[265] train-mlogloss:0.466038 val-mlogloss:0.54347
[266] train-mlogloss:0.465789 val-mlogloss:0.543377
[267] train-mlogloss:0.465552 val-mlogloss:0.543317
[268] train-mlogloss:0.465254 val-mlogloss:0.543243
[269] train-mlogloss:0.46486 val-mlogloss:0.543115
[270] train-mlogloss:0.464542 val-mlogloss:0.543063
[271] train-mlogloss:0.46418 val-mlogloss:0.542952
[272] train-mlogloss:0.463808 val-mlogloss:0.54286
[273] train-mlogloss:0.463554 val-mlogloss:0.542761
[274] train-mlogloss:0.463225 val-mlogloss:0.542649
[275] train-mlogloss:0.462911 val-mlogloss:0.542622
[276] train-mlogloss:0.462535 val-mlogloss:0.542565
[277] train-mlogloss:0.462119 val-mlogloss:0.542442
[278] train-mlogloss:0.461796 val-mlogloss:0.5423
[279] train-mlogloss:0.461461 val-mlogloss:0.542144
[280] train-mlogloss:0.461159 val-mlogloss:0.542059
[281] train-mlogloss:0.460812 val-mlogloss:0.541918
[282] train-mlogloss:0.460579 val-mlogloss:0.541843
[283] train-mlogloss:0.460363 val-mlogloss:0.541758
[284] train-mlogloss:0.460093 val-mlogloss:0.541668
[285] train-mlogloss:0.459731 val-mlogloss:0.541535
[286] train-mlogloss:0.459363 val-mlogloss:0.541435
[287] train-mlogloss:0.459009 val-mlogloss:0.54137
[288] train-mlogloss:0.458676 val-mlogloss:0.541311
[289] train-mlogloss:0.458402 val-mlogloss:0.541251
[290] train-mlogloss:0.458103 val-mlogloss:0.541208
[291] train-mlogloss:0.457762 val-mlogloss:0.541037
[292] train-mlogloss:0.457407 val-mlogloss:0.54096
[293] train-mlogloss:0.457017 val-mlogloss:0.540842
[294] train-mlogloss:0.456715 val-mlogloss:0.54077
[295] train-mlogloss:0.456397 val-mlogloss:0.540696
[296] train-mlogloss:0.456079 val-mlogloss:0.540585
[297] train-mlogloss:0.455779 val-mlogloss:0.540548
[298] train-mlogloss:0.455386 val-mlogloss:0.540456
[299] train-mlogloss:0.455043 val-mlogloss:0.540407
[300] train-mlogloss:0.454687 val-mlogloss:0.540336
[301] train-mlogloss:0.45428 val-mlogloss:0.540223
[302] train-mlogloss:0.453945 val-mlogloss:0.540133
[303] train-mlogloss:0.453579 val-mlogloss:0.540045
[304] train-mlogloss:0.453307 val-mlogloss:0.539984
[305] train-mlogloss:0.453065 val-mlogloss:0.539963
[306] train-mlogloss:0.452725 val-mlogloss:0.539879
[307] train-mlogloss:0.452364 val-mlogloss:0.539821
[308] train-mlogloss:0.452084 val-mlogloss:0.539737
[309] train-mlogloss:0.451849 val-mlogloss:0.539678
[310] train-mlogloss:0.45156 val-mlogloss:0.539624
[311] train-mlogloss:0.451261 val-mlogloss:0.539564
[312] train-mlogloss:0.450995 val-mlogloss:0.53948
[313] train-mlogloss:0.450611 val-mlogloss:0.539418
[314] train-mlogloss:0.450279 val-mlogloss:0.539313
[315] train-mlogloss:0.45004 val-mlogloss:0.53926
[316] train-mlogloss:0.449769 val-mlogloss:0.539194
[317] train-mlogloss:0.449576 val-mlogloss:0.539123
[318] train-mlogloss:0.449175 val-mlogloss:0.539016
[319] train-mlogloss:0.448813 val-mlogloss:0.538982
[320] train-mlogloss:0.448496 val-mlogloss:0.538963
[321] train-mlogloss:0.448132 val-mlogloss:0.538884
[322] train-mlogloss:0.447928 val-mlogloss:0.538835
[323] train-mlogloss:0.44768 val-mlogloss:0.53879
[324] train-mlogloss:0.447367 val-mlogloss:0.538741
[325] train-mlogloss:0.447095 val-mlogloss:0.53868
[326] train-mlogloss:0.446774 val-mlogloss:0.538627
[327] train-mlogloss:0.446428 val-mlogloss:0.538553
[328] train-mlogloss:0.44627 val-mlogloss:0.538494
[329] train-mlogloss:0.446015 val-mlogloss:0.538416
[330] train-mlogloss:0.445811 val-mlogloss:0.538367
[331] train-mlogloss:0.445565 val-mlogloss:0.538347
[332] train-mlogloss:0.445294 val-mlogloss:0.538286
[333] train-mlogloss:0.445023 val-mlogloss:0.538221
[334] train-mlogloss:0.444764 val-mlogloss:0.538147
[335] train-mlogloss:0.444532 val-mlogloss:0.53808
[336] train-mlogloss:0.444238 val-mlogloss:0.537991
[337] train-mlogloss:0.443995 val-mlogloss:0.537953
[338] train-mlogloss:0.443831 val-mlogloss:0.537879
[339] train-mlogloss:0.44351 val-mlogloss:0.53784
[340] train-mlogloss:0.443308 val-mlogloss:0.53779
[341] train-mlogloss:0.443016 val-mlogloss:0.537758
[342] train-mlogloss:0.442735 val-mlogloss:0.537691
[343] train-mlogloss:0.442558 val-mlogloss:0.53763
[344] train-mlogloss:0.442185 val-mlogloss:0.537551
[345] train-mlogloss:0.441962 val-mlogloss:0.537437
[346] train-mlogloss:0.441659 val-mlogloss:0.537384
[347] train-mlogloss:0.441308 val-mlogloss:0.537321
[348] train-mlogloss:0.44111 val-mlogloss:0.537239
[349] train-mlogloss:0.440823 val-mlogloss:0.537207
[350] train-mlogloss:0.440558 val-mlogloss:0.537143
[351] train-mlogloss:0.440308 val-mlogloss:0.537104
[352] train-mlogloss:0.440112 val-mlogloss:0.537029
[353] train-mlogloss:0.439805 val-mlogloss:0.536989
[354] train-mlogloss:0.43956 val-mlogloss:0.536949
[355] train-mlogloss:0.439208 val-mlogloss:0.536934
[356] train-mlogloss:0.438952 val-mlogloss:0.536885
[357] train-mlogloss:0.438637 val-mlogloss:0.536814
[358] train-mlogloss:0.438343 val-mlogloss:0.536763
[359] train-mlogloss:0.437997 val-mlogloss:0.536712
[360] train-mlogloss:0.437799 val-mlogloss:0.536677
[361] train-mlogloss:0.437511 val-mlogloss:0.536632
[362] train-mlogloss:0.437185 val-mlogloss:0.536547
[363] train-mlogloss:0.436929 val-mlogloss:0.536505
[364] train-mlogloss:0.43672 val-mlogloss:0.536451
[365] train-mlogloss:0.43636 val-mlogloss:0.536373
[366] train-mlogloss:0.4361 val-mlogloss:0.536341
[367] train-mlogloss:0.435928 val-mlogloss:0.536287
[368] train-mlogloss:0.435741 val-mlogloss:0.536224
[369] train-mlogloss:0.435478 val-mlogloss:0.53615
[370] train-mlogloss:0.435184 val-mlogloss:0.5361
[371] train-mlogloss:0.434867 val-mlogloss:0.535991
[372] train-mlogloss:0.434578 val-mlogloss:0.535944
[373] train-mlogloss:0.434356 val-mlogloss:0.53593
[374] train-mlogloss:0.43404 val-mlogloss:0.535902
[375] train-mlogloss:0.433809 val-mlogloss:0.535856
[376] train-mlogloss:0.433654 val-mlogloss:0.535845
[377] train-mlogloss:0.433404 val-mlogloss:0.535784
[378] train-mlogloss:0.433131 val-mlogloss:0.535785
[379] train-mlogloss:0.432877 val-mlogloss:0.535702
[380] train-mlogloss:0.432578 val-mlogloss:0.535667
[381] train-mlogloss:0.432299 val-mlogloss:0.535601
[382] train-mlogloss:0.432055 val-mlogloss:0.535538
[383] train-mlogloss:0.431781 val-mlogloss:0.535546
[384] train-mlogloss:0.431458 val-mlogloss:0.535533
[385] train-mlogloss:0.431175 val-mlogloss:0.535453
[386] train-mlogloss:0.430979 val-mlogloss:0.535404
[387] train-mlogloss:0.430732 val-mlogloss:0.535386
[388] train-mlogloss:0.430448 val-mlogloss:0.535316
[389] train-mlogloss:0.430137 val-mlogloss:0.535231
[390] train-mlogloss:0.429851 val-mlogloss:0.535158
[391] train-mlogloss:0.429588 val-mlogloss:0.535117
[392] train-mlogloss:0.429345 val-mlogloss:0.535109
[393] train-mlogloss:0.429112 val-mlogloss:0.535071
[394] train-mlogloss:0.428832 val-mlogloss:0.535046
[395] train-mlogloss:0.428655 val-mlogloss:0.535
[396] train-mlogloss:0.428389 val-mlogloss:0.534945
[397] train-mlogloss:0.42819 val-mlogloss:0.534875
[398] train-mlogloss:0.427943 val-mlogloss:0.534877
[399] train-mlogloss:0.427829 val-mlogloss:0.534862
[400] train-mlogloss:0.427524 val-mlogloss:0.534772
[401] train-mlogloss:0.42728 val-mlogloss:0.534726
[402] train-mlogloss:0.426957 val-mlogloss:0.534671
[403] train-mlogloss:0.426716 val-mlogloss:0.53464
[404] train-mlogloss:0.426497 val-mlogloss:0.534581
[405] train-mlogloss:0.426353 val-mlogloss:0.534555
[406] train-mlogloss:0.426098 val-mlogloss:0.534506
[407] train-mlogloss:0.425769 val-mlogloss:0.534445
[408] train-mlogloss:0.425562 val-mlogloss:0.53437
[409] train-mlogloss:0.425396 val-mlogloss:0.534355
[410] train-mlogloss:0.425141 val-mlogloss:0.534271
[411] train-mlogloss:0.424841 val-mlogloss:0.534211
[412] train-mlogloss:0.424522 val-mlogloss:0.534218
[413] train-mlogloss:0.424295 val-mlogloss:0.534175
[414] train-mlogloss:0.424096 val-mlogloss:0.534136
[415] train-mlogloss:0.423764 val-mlogloss:0.534045
[416] train-mlogloss:0.423606 val-mlogloss:0.534031
[417] train-mlogloss:0.423327 val-mlogloss:0.534046
[418] train-mlogloss:0.423182 val-mlogloss:0.534032
[419] train-mlogloss:0.422917 val-mlogloss:0.534018
[420] train-mlogloss:0.422686 val-mlogloss:0.534
[421] train-mlogloss:0.42245 val-mlogloss:0.533949
[422] train-mlogloss:0.422192 val-mlogloss:0.533943
[423] train-mlogloss:0.42204 val-mlogloss:0.533931
[424] train-mlogloss:0.421715 val-mlogloss:0.533869
[425] train-mlogloss:0.421478 val-mlogloss:0.533834
[426] train-mlogloss:0.42122 val-mlogloss:0.533801
[427] train-mlogloss:0.420978 val-mlogloss:0.533805
[428] train-mlogloss:0.420769 val-mlogloss:0.533801
[429] train-mlogloss:0.420592 val-mlogloss:0.533789
[430] train-mlogloss:0.420455 val-mlogloss:0.533789
[431] train-mlogloss:0.420253 val-mlogloss:0.53375
[432] train-mlogloss:0.420097 val-mlogloss:0.533744
[433] train-mlogloss:0.419868 val-mlogloss:0.533682
[434] train-mlogloss:0.419688 val-mlogloss:0.533658
[435] train-mlogloss:0.419406 val-mlogloss:0.533604
[436] train-mlogloss:0.419159 val-mlogloss:0.533588
[437] train-mlogloss:0.41894 val-mlogloss:0.533565
[438] train-mlogloss:0.418655 val-mlogloss:0.533498
[439] train-mlogloss:0.418377 val-mlogloss:0.533461
[440] train-mlogloss:0.418175 val-mlogloss:0.533449
[441] train-mlogloss:0.417855 val-mlogloss:0.533438
[442] train-mlogloss:0.417564 val-mlogloss:0.533429
[443] train-mlogloss:0.417247 val-mlogloss:0.53337
[444] train-mlogloss:0.417002 val-mlogloss:0.533365
[445] train-mlogloss:0.416743 val-mlogloss:0.533282
[446] train-mlogloss:0.416421 val-mlogloss:0.533248
[447] train-mlogloss:0.416184 val-mlogloss:0.533246
[448] train-mlogloss:0.416009 val-mlogloss:0.533226
[449] train-mlogloss:0.415769 val-mlogloss:0.533183
[450] train-mlogloss:0.41555 val-mlogloss:0.533136
[451] train-mlogloss:0.415343 val-mlogloss:0.533133
[452] train-mlogloss:0.415136 val-mlogloss:0.533109
[453] train-mlogloss:0.414861 val-mlogloss:0.533087
[454] train-mlogloss:0.414589 val-mlogloss:0.533011
[455] train-mlogloss:0.414389 val-mlogloss:0.532992
[456] train-mlogloss:0.414187 val-mlogloss:0.532975
[457] train-mlogloss:0.414 val-mlogloss:0.53296
[458] train-mlogloss:0.413756 val-mlogloss:0.532895
[459] train-mlogloss:0.413521 val-mlogloss:0.532848
[460] train-mlogloss:0.413318 val-mlogloss:0.532776
[461] train-mlogloss:0.413095 val-mlogloss:0.532711
[462] train-mlogloss:0.412853 val-mlogloss:0.532718
[463] train-mlogloss:0.412634 val-mlogloss:0.532664
[464] train-mlogloss:0.412453 val-mlogloss:0.532655
[465] train-mlogloss:0.412306 val-mlogloss:0.532597
[466] train-mlogloss:0.412141 val-mlogloss:0.532574
[467] train-mlogloss:0.41194 val-mlogloss:0.532547
[468] train-mlogloss:0.411752 val-mlogloss:0.532494
[469] train-mlogloss:0.411429 val-mlogloss:0.532425
[470] train-mlogloss:0.411189 val-mlogloss:0.532415
[471] train-mlogloss:0.410952 val-mlogloss:0.5324
[472] train-mlogloss:0.410726 val-mlogloss:0.53232
[473] train-mlogloss:0.410522 val-mlogloss:0.532276
[474] train-mlogloss:0.410324 val-mlogloss:0.532265
[475] train-mlogloss:0.410035 val-mlogloss:0.532188
[476] train-mlogloss:0.409816 val-mlogloss:0.532178
[477] train-mlogloss:0.409513 val-mlogloss:0.532159
[478] train-mlogloss:0.40937 val-mlogloss:0.532126
[479] train-mlogloss:0.409043 val-mlogloss:0.53213
[480] train-mlogloss:0.408832 val-mlogloss:0.532091
[481] train-mlogloss:0.408611 val-mlogloss:0.532069
[482] train-mlogloss:0.408412 val-mlogloss:0.532019
[483] train-mlogloss:0.408189 val-mlogloss:0.531997
[484] train-mlogloss:0.407946 val-mlogloss:0.531962
[485] train-mlogloss:0.407753 val-mlogloss:0.531951
[486] train-mlogloss:0.40755 val-mlogloss:0.531946
[487] train-mlogloss:0.407364 val-mlogloss:0.531878
[488] train-mlogloss:0.407143 val-mlogloss:0.531863
[489] train-mlogloss:0.40687 val-mlogloss:0.531819
[490] train-mlogloss:0.406588 val-mlogloss:0.531811
[491] train-mlogloss:0.406355 val-mlogloss:0.531828
[492] train-mlogloss:0.406157 val-mlogloss:0.531797
[493] train-mlogloss:0.405944 val-mlogloss:0.531789
[494] train-mlogloss:0.405757 val-mlogloss:0.531758
[495] train-mlogloss:0.405561 val-mlogloss:0.531731
[496] train-mlogloss:0.405301 val-mlogloss:0.531693
[497] train-mlogloss:0.405095 val-mlogloss:0.531682
[498] train-mlogloss:0.404875 val-mlogloss:0.531668
[499] train-mlogloss:0.404655 val-mlogloss:0.531641
[500] train-mlogloss:0.404423 val-mlogloss:0.531624
[501] train-mlogloss:0.404156 val-mlogloss:0.531606
[502] train-mlogloss:0.403947 val-mlogloss:0.531612
[503] train-mlogloss:0.403679 val-mlogloss:0.53151
[504] train-mlogloss:0.403419 val-mlogloss:0.531485
[505] train-mlogloss:0.403181 val-mlogloss:0.53144
[506] train-mlogloss:0.402987 val-mlogloss:0.53142
[507] train-mlogloss:0.402872 val-mlogloss:0.531429
[508] train-mlogloss:0.402723 val-mlogloss:0.531376
[509] train-mlogloss:0.402528 val-mlogloss:0.531387
[510] train-mlogloss:0.402297 val-mlogloss:0.531373
[511] train-mlogloss:0.402014 val-mlogloss:0.531306
[512] train-mlogloss:0.401777 val-mlogloss:0.531286
[513] train-mlogloss:0.40157 val-mlogloss:0.531286
[514] train-mlogloss:0.40136 val-mlogloss:0.531247
[515] train-mlogloss:0.401197 val-mlogloss:0.531241
[516] train-mlogloss:0.401028 val-mlogloss:0.531217
[517] train-mlogloss:0.400765 val-mlogloss:0.531204
[518] train-mlogloss:0.400555 val-mlogloss:0.531159
[519] train-mlogloss:0.400368 val-mlogloss:0.53116
[520] train-mlogloss:0.400153 val-mlogloss:0.531171
[521] train-mlogloss:0.399932 val-mlogloss:0.53118
[522] train-mlogloss:0.399702 val-mlogloss:0.531141
[523] train-mlogloss:0.399565 val-mlogloss:0.531115
[524] train-mlogloss:0.399366 val-mlogloss:0.531106
[525] train-mlogloss:0.399205 val-mlogloss:0.531092
[526] train-mlogloss:0.399014 val-mlogloss:0.531095
[527] train-mlogloss:0.398763 val-mlogloss:0.531026
[528] train-mlogloss:0.398561 val-mlogloss:0.531033
[529] train-mlogloss:0.398414 val-mlogloss:0.531041
[530] train-mlogloss:0.398167 val-mlogloss:0.531032
[531] train-mlogloss:0.397938 val-mlogloss:0.531025
[532] train-mlogloss:0.397734 val-mlogloss:0.531015
[533] train-mlogloss:0.397522 val-mlogloss:0.530998
[534] train-mlogloss:0.397236 val-mlogloss:0.530952
[535] train-mlogloss:0.397054 val-mlogloss:0.530917
[536] train-mlogloss:0.396906 val-mlogloss:0.530905
[537] train-mlogloss:0.396737 val-mlogloss:0.530888
[538] train-mlogloss:0.396607 val-mlogloss:0.530883
[539] train-mlogloss:0.396419 val-mlogloss:0.530867
[540] train-mlogloss:0.396192 val-mlogloss:0.530806
[541] train-mlogloss:0.39599 val-mlogloss:0.530797
[542] train-mlogloss:0.39582 val-mlogloss:0.530771
[543] train-mlogloss:0.395668 val-mlogloss:0.530749
[544] train-mlogloss:0.395367 val-mlogloss:0.530769
[545] train-mlogloss:0.395172 val-mlogloss:0.530728
[546] train-mlogloss:0.394999 val-mlogloss:0.530702
[547] train-mlogloss:0.394794 val-mlogloss:0.530706
[548] train-mlogloss:0.394564 val-mlogloss:0.530673
[549] train-mlogloss:0.394319 val-mlogloss:0.530639
[550] train-mlogloss:0.394157 val-mlogloss:0.530644
[551] train-mlogloss:0.393918 val-mlogloss:0.53064
[552] train-mlogloss:0.393697 val-mlogloss:0.530613
[553] train-mlogloss:0.393492 val-mlogloss:0.530629
[554] train-mlogloss:0.393203 val-mlogloss:0.530603
[555] train-mlogloss:0.393007 val-mlogloss:0.530554
[556] train-mlogloss:0.392802 val-mlogloss:0.530522
[557] train-mlogloss:0.392547 val-mlogloss:0.530531
[558] train-mlogloss:0.39229 val-mlogloss:0.530543
[559] train-mlogloss:0.39206 val-mlogloss:0.530514
[560] train-mlogloss:0.391857 val-mlogloss:0.530515
[561] train-mlogloss:0.391595 val-mlogloss:0.530499
[562] train-mlogloss:0.391351 val-mlogloss:0.530458
[563] train-mlogloss:0.391091 val-mlogloss:0.53043
[564] train-mlogloss:0.390872 val-mlogloss:0.530447
[565] train-mlogloss:0.390734 val-mlogloss:0.530404
[566] train-mlogloss:0.390515 val-mlogloss:0.530397
[567] train-mlogloss:0.390333 val-mlogloss:0.530425
[568] train-mlogloss:0.390143 val-mlogloss:0.530416
[569] train-mlogloss:0.390033 val-mlogloss:0.530377
[570] train-mlogloss:0.389804 val-mlogloss:0.530354
[571] train-mlogloss:0.389614 val-mlogloss:0.530382
[572] train-mlogloss:0.389426 val-mlogloss:0.530379
[573] train-mlogloss:0.389216 val-mlogloss:0.530344
[574] train-mlogloss:0.389022 val-mlogloss:0.530322
[575] train-mlogloss:0.388884 val-mlogloss:0.53029
[576] train-mlogloss:0.388637 val-mlogloss:0.530232
[577] train-mlogloss:0.388452 val-mlogloss:0.530193
[578] train-mlogloss:0.38828 val-mlogloss:0.530221
[579] train-mlogloss:0.388064 val-mlogloss:0.530238
[580] train-mlogloss:0.387827 val-mlogloss:0.530247
[581] train-mlogloss:0.38763 val-mlogloss:0.530248
[582] train-mlogloss:0.387348 val-mlogloss:0.530245
[583] train-mlogloss:0.387184 val-mlogloss:0.530226
[584] train-mlogloss:0.386957 val-mlogloss:0.530228
[585] train-mlogloss:0.386798 val-mlogloss:0.530238
[586] train-mlogloss:0.386608 val-mlogloss:0.530222
[587] train-mlogloss:0.386444 val-mlogloss:0.530194
[588] train-mlogloss:0.386247 val-mlogloss:0.530204
[589] train-mlogloss:0.386073 val-mlogloss:0.530159
[590] train-mlogloss:0.385893 val-mlogloss:0.530175
[591] train-mlogloss:0.385691 val-mlogloss:0.530156
[592] train-mlogloss:0.385514 val-mlogloss:0.53016
[593] train-mlogloss:0.385239 val-mlogloss:0.530152
[594] train-mlogloss:0.385036 val-mlogloss:0.530185
[595] train-mlogloss:0.384858 val-mlogloss:0.530168
[596] train-mlogloss:0.384656 val-mlogloss:0.530096
[597] train-mlogloss:0.384493 val-mlogloss:0.530086
[598] train-mlogloss:0.38432 val-mlogloss:0.530057
[599] train-mlogloss:0.38414 val-mlogloss:0.530073
[600] train-mlogloss:0.383909 val-mlogloss:0.530039
[601] train-mlogloss:0.383671 val-mlogloss:0.530017
[602] train-mlogloss:0.383475 val-mlogloss:0.529994
[603] train-mlogloss:0.383325 val-mlogloss:0.529974
[604] train-mlogloss:0.383128 val-mlogloss:0.52995
[605] train-mlogloss:0.382963 val-mlogloss:0.529941
[606] train-mlogloss:0.382738 val-mlogloss:0.529889
[607] train-mlogloss:0.382544 val-mlogloss:0.529907
[608] train-mlogloss:0.382432 val-mlogloss:0.529903
[609] train-mlogloss:0.382289 val-mlogloss:0.529901
[610] train-mlogloss:0.382119 val-mlogloss:0.529899
[611] train-mlogloss:0.38187 val-mlogloss:0.529898
[612] train-mlogloss:0.381661 val-mlogloss:0.529876
[613] train-mlogloss:0.381422 val-mlogloss:0.529891
[614] train-mlogloss:0.38118 val-mlogloss:0.529905
[615] train-mlogloss:0.380944 val-mlogloss:0.529842
[616] train-mlogloss:0.380727 val-mlogloss:0.529825
[617] train-mlogloss:0.380616 val-mlogloss:0.52979
[618] train-mlogloss:0.380401 val-mlogloss:0.529761
[619] train-mlogloss:0.380229 val-mlogloss:0.52971
[620] train-mlogloss:0.380046 val-mlogloss:0.529724
[621] train-mlogloss:0.379836 val-mlogloss:0.529726
[622] train-mlogloss:0.379612 val-mlogloss:0.529689
[623] train-mlogloss:0.379497 val-mlogloss:0.529688
[624] train-mlogloss:0.379231 val-mlogloss:0.529676
[625] train-mlogloss:0.379045 val-mlogloss:0.529673
[626] train-mlogloss:0.378807 val-mlogloss:0.52968
[627] train-mlogloss:0.378529 val-mlogloss:0.529664
[628] train-mlogloss:0.378299 val-mlogloss:0.529658
[629] train-mlogloss:0.378087 val-mlogloss:0.529632
[630] train-mlogloss:0.377876 val-mlogloss:0.529631
[631] train-mlogloss:0.377697 val-mlogloss:0.529626
[632] train-mlogloss:0.377498 val-mlogloss:0.529625
[633] train-mlogloss:0.377302 val-mlogloss:0.529676
[634] train-mlogloss:0.377132 val-mlogloss:0.529708
[635] train-mlogloss:0.376929 val-mlogloss:0.529678
[636] train-mlogloss:0.37679 val-mlogloss:0.529727
[637] train-mlogloss:0.376566 val-mlogloss:0.529689
[638] train-mlogloss:0.376372 val-mlogloss:0.529682
[639] train-mlogloss:0.376172 val-mlogloss:0.529669
[640] train-mlogloss:0.376043 val-mlogloss:0.529663
[641] train-mlogloss:0.375908 val-mlogloss:0.529687
[642] train-mlogloss:0.375659 val-mlogloss:0.529673
[643] train-mlogloss:0.375429 val-mlogloss:0.529695
[644] train-mlogloss:0.375214 val-mlogloss:0.529685
[645] train-mlogloss:0.375015 val-mlogloss:0.529659
[646] train-mlogloss:0.374775 val-mlogloss:0.529628
[647] train-mlogloss:0.374612 val-mlogloss:0.529571
[648] train-mlogloss:0.374419 val-mlogloss:0.529566
[649] train-mlogloss:0.374168 val-mlogloss:0.529542
[650] train-mlogloss:0.373975 val-mlogloss:0.52954
[651] train-mlogloss:0.3738 val-mlogloss:0.529513
[652] train-mlogloss:0.373584 val-mlogloss:0.529524
[653] train-mlogloss:0.373464 val-mlogloss:0.529504
[654] train-mlogloss:0.373279 val-mlogloss:0.52948
[655] train-mlogloss:0.373151 val-mlogloss:0.52945
[656] train-mlogloss:0.372989 val-mlogloss:0.52947
[657] train-mlogloss:0.37276 val-mlogloss:0.529494
[658] train-mlogloss:0.372638 val-mlogloss:0.529477
[659] train-mlogloss:0.37256 val-mlogloss:0.529462
[660] train-mlogloss:0.372315 val-mlogloss:0.529415
[661] train-mlogloss:0.372138 val-mlogloss:0.52945
[662] train-mlogloss:0.371959 val-mlogloss:0.52944
[663] train-mlogloss:0.371763 val-mlogloss:0.529424
[664] train-mlogloss:0.371537 val-mlogloss:0.529407
[665] train-mlogloss:0.371319 val-mlogloss:0.529363
[666] train-mlogloss:0.371145 val-mlogloss:0.529378
[667] train-mlogloss:0.370931 val-mlogloss:0.529362
[668] train-mlogloss:0.370743 val-mlogloss:0.529359
[669] train-mlogloss:0.370598 val-mlogloss:0.529348
[670] train-mlogloss:0.370409 val-mlogloss:0.529365
[671] train-mlogloss:0.370149 val-mlogloss:0.529368
[672] train-mlogloss:0.369952 val-mlogloss:0.529381
[673] train-mlogloss:0.369786 val-mlogloss:0.529368
[674] train-mlogloss:0.369608 val-mlogloss:0.529356
[675] train-mlogloss:0.369461 val-mlogloss:0.529339
[676] train-mlogloss:0.36931 val-mlogloss:0.529349
[677] train-mlogloss:0.36913 val-mlogloss:0.529343
[678] train-mlogloss:0.36891 val-mlogloss:0.529345
[679] train-mlogloss:0.368704 val-mlogloss:0.529358
[680] train-mlogloss:0.368531 val-mlogloss:0.52935
[681] train-mlogloss:0.368413 val-mlogloss:0.52933
[682] train-mlogloss:0.368216 val-mlogloss:0.529298
[683] train-mlogloss:0.367952 val-mlogloss:0.529291
[684] train-mlogloss:0.367722 val-mlogloss:0.529306
[685] train-mlogloss:0.367601 val-mlogloss:0.529319
[686] train-mlogloss:0.367432 val-mlogloss:0.529307
[687] train-mlogloss:0.367195 val-mlogloss:0.529288
[688] train-mlogloss:0.367103 val-mlogloss:0.529289
[689] train-mlogloss:0.366898 val-mlogloss:0.529315
[690] train-mlogloss:0.366684 val-mlogloss:0.529292
[691] train-mlogloss:0.366461 val-mlogloss:0.529268
[692] train-mlogloss:0.36631 val-mlogloss:0.529277
[693] train-mlogloss:0.366094 val-mlogloss:0.529265
[694] train-mlogloss:0.365915 val-mlogloss:0.529273
[695] train-mlogloss:0.365717 val-mlogloss:0.52925
[696] train-mlogloss:0.365562 val-mlogloss:0.529238
[697] train-mlogloss:0.365385 val-mlogloss:0.529241
[698] train-mlogloss:0.365206 val-mlogloss:0.529237
[699] train-mlogloss:0.365054 val-mlogloss:0.529257
[700] train-mlogloss:0.364907 val-mlogloss:0.529241
[701] train-mlogloss:0.364688 val-mlogloss:0.529187
[702] train-mlogloss:0.364514 val-mlogloss:0.529172
[703] train-mlogloss:0.364342 val-mlogloss:0.529164
[704] train-mlogloss:0.364103 val-mlogloss:0.529168
[705] train-mlogloss:0.363972 val-mlogloss:0.529154
[706] train-mlogloss:0.363757 val-mlogloss:0.529141
[707] train-mlogloss:0.363573 val-mlogloss:0.529122
[708] train-mlogloss:0.36335 val-mlogloss:0.529159
[709] train-mlogloss:0.363125 val-mlogloss:0.529157
[710] train-mlogloss:0.362945 val-mlogloss:0.529181
[711] train-mlogloss:0.362815 val-mlogloss:0.529197
[712] train-mlogloss:0.362601 val-mlogloss:0.529202
[713] train-mlogloss:0.362407 val-mlogloss:0.529183
[714] train-mlogloss:0.362183 val-mlogloss:0.529178
[715] train-mlogloss:0.36202 val-mlogloss:0.529169
[716] train-mlogloss:0.361778 val-mlogloss:0.529171
[717] train-mlogloss:0.361612 val-mlogloss:0.529144
[718] train-mlogloss:0.361449 val-mlogloss:0.529155
[719] train-mlogloss:0.36136 val-mlogloss:0.529149
[720] train-mlogloss:0.361224 val-mlogloss:0.529136
[721] train-mlogloss:0.361056 val-mlogloss:0.529132
[722] train-mlogloss:0.360881 val-mlogloss:0.529145
[723] train-mlogloss:0.360727 val-mlogloss:0.529104
[724] train-mlogloss:0.360473 val-mlogloss:0.529148
[725] train-mlogloss:0.360269 val-mlogloss:0.529119
[726] train-mlogloss:0.360047 val-mlogloss:0.529152
[727] train-mlogloss:0.359877 val-mlogloss:0.529181
[728] train-mlogloss:0.359777 val-mlogloss:0.529179
[729] train-mlogloss:0.359586 val-mlogloss:0.529144
[730] train-mlogloss:0.359404 val-mlogloss:0.529153
[731] train-mlogloss:0.359293 val-mlogloss:0.529151
[732] train-mlogloss:0.359113 val-mlogloss:0.529137
[733] train-mlogloss:0.358993 val-mlogloss:0.529166
[734] train-mlogloss:0.35883 val-mlogloss:0.529117
[735] train-mlogloss:0.358629 val-mlogloss:0.529138
[736] train-mlogloss:0.358501 val-mlogloss:0.529165
[737] train-mlogloss:0.358291 val-mlogloss:0.529189
[738] train-mlogloss:0.358071 val-mlogloss:0.529162
[739] train-mlogloss:0.357888 val-mlogloss:0.529166
[740] train-mlogloss:0.357744 val-mlogloss:0.529185
[741] train-mlogloss:0.357603 val-mlogloss:0.529169
[742] train-mlogloss:0.357448 val-mlogloss:0.529176
[743] train-mlogloss:0.357265 val-mlogloss:0.529139
[744] train-mlogloss:0.357085 val-mlogloss:0.529128
[745] train-mlogloss:0.356913 val-mlogloss:0.529118
[746] train-mlogloss:0.35672 val-mlogloss:0.529134
[747] train-mlogloss:0.356532 val-mlogloss:0.529138
[748] train-mlogloss:0.356352 val-mlogloss:0.52911
[749] train-mlogloss:0.356153 val-mlogloss:0.529111
[750] train-mlogloss:0.355955 val-mlogloss:0.529089
[751] train-mlogloss:0.355712 val-mlogloss:0.529106
[752] train-mlogloss:0.355526 val-mlogloss:0.529127
[753] train-mlogloss:0.355354 val-mlogloss:0.529107
[754] train-mlogloss:0.355214 val-mlogloss:0.529085
[755] train-mlogloss:0.355064 val-mlogloss:0.529045
[756] train-mlogloss:0.354871 val-mlogloss:0.529036
[757] train-mlogloss:0.354734 val-mlogloss:0.528979
[758] train-mlogloss:0.354505 val-mlogloss:0.528989
[759] train-mlogloss:0.354327 val-mlogloss:0.528991
[760] train-mlogloss:0.354165 val-mlogloss:0.528962
[761] train-mlogloss:0.354012 val-mlogloss:0.528943
[762] train-mlogloss:0.353801 val-mlogloss:0.528932
[763] train-mlogloss:0.35365 val-mlogloss:0.528921
[764] train-mlogloss:0.353535 val-mlogloss:0.528955
[765] train-mlogloss:0.353288 val-mlogloss:0.528984
[766] train-mlogloss:0.35313 val-mlogloss:0.528997
[767] train-mlogloss:0.35293 val-mlogloss:0.528972
[768] train-mlogloss:0.352771 val-mlogloss:0.528967
[769] train-mlogloss:0.352641 val-mlogloss:0.528992
[770] train-mlogloss:0.352429 val-mlogloss:0.528965
[771] train-mlogloss:0.352235 val-mlogloss:0.528982
[772] train-mlogloss:0.352075 val-mlogloss:0.528977
[773] train-mlogloss:0.351888 val-mlogloss:0.52899
[774] train-mlogloss:0.351782 val-mlogloss:0.528986
[775] train-mlogloss:0.351638 val-mlogloss:0.528985
[776] train-mlogloss:0.351485 val-mlogloss:0.528963
[777] train-mlogloss:0.351332 val-mlogloss:0.528939
[778] train-mlogloss:0.351145 val-mlogloss:0.528913
[779] train-mlogloss:0.350988 val-mlogloss:0.528931
[780] train-mlogloss:0.350829 val-mlogloss:0.528933
[781] train-mlogloss:0.350716 val-mlogloss:0.528919
[782] train-mlogloss:0.35055 val-mlogloss:0.528924
[783] train-mlogloss:0.350412 val-mlogloss:0.528904
[784] train-mlogloss:0.35023 val-mlogloss:0.528927
[785] train-mlogloss:0.350066 val-mlogloss:0.528931
[786] train-mlogloss:0.349956 val-mlogloss:0.528933
[787] train-mlogloss:0.349845 val-mlogloss:0.528919
[788] train-mlogloss:0.349676 val-mlogloss:0.528895
[789] train-mlogloss:0.349535 val-mlogloss:0.528889
[790] train-mlogloss:0.349377 val-mlogloss:0.528872
[791] train-mlogloss:0.349213 val-mlogloss:0.528879
[792] train-mlogloss:0.349071 val-mlogloss:0.528883
[793] train-mlogloss:0.348935 val-mlogloss:0.528916
[794] train-mlogloss:0.348808 val-mlogloss:0.528907
[795] train-mlogloss:0.348667 val-mlogloss:0.528929
[796] train-mlogloss:0.348498 val-mlogloss:0.528895
[797] train-mlogloss:0.348315 val-mlogloss:0.528914
[798] train-mlogloss:0.348117 val-mlogloss:0.5289
[799] train-mlogloss:0.34794 val-mlogloss:0.528922
[800] train-mlogloss:0.347794 val-mlogloss:0.528917
[801] train-mlogloss:0.347595 val-mlogloss:0.528932
[802] train-mlogloss:0.347467 val-mlogloss:0.528934
[803] train-mlogloss:0.347275 val-mlogloss:0.528948
[804] train-mlogloss:0.347181 val-mlogloss:0.528952
[805] train-mlogloss:0.347061 val-mlogloss:0.528942
[806] train-mlogloss:0.3469 val-mlogloss:0.528919
[807] train-mlogloss:0.346684 val-mlogloss:0.52888
[808] train-mlogloss:0.346548 val-mlogloss:0.528875
[809] train-mlogloss:0.34638 val-mlogloss:0.528848
[810] train-mlogloss:0.346187 val-mlogloss:0.528817
[811] train-mlogloss:0.346078 val-mlogloss:0.528808
[812] train-mlogloss:0.345931 val-mlogloss:0.528806
[813] train-mlogloss:0.345747 val-mlogloss:0.528849
[814] train-mlogloss:0.345546 val-mlogloss:0.528837
[815] train-mlogloss:0.345336 val-mlogloss:0.528836
[816] train-mlogloss:0.345191 val-mlogloss:0.528849
[817] train-mlogloss:0.345036 val-mlogloss:0.528849
[818] train-mlogloss:0.344858 val-mlogloss:0.528857
[819] train-mlogloss:0.344748 val-mlogloss:0.528871
[820] train-mlogloss:0.344569 val-mlogloss:0.528851
[821] train-mlogloss:0.344432 val-mlogloss:0.528881
[822] train-mlogloss:0.344269 val-mlogloss:0.528898
[823] train-mlogloss:0.344124 val-mlogloss:0.528891
[824] train-mlogloss:0.343996 val-mlogloss:0.528878
[825] train-mlogloss:0.343793 val-mlogloss:0.528877
[826] train-mlogloss:0.343683 val-mlogloss:0.528879
[827] train-mlogloss:0.343515 val-mlogloss:0.528899
[828] train-mlogloss:0.343347 val-mlogloss:0.528939
[829] train-mlogloss:0.343194 val-mlogloss:0.528944
[830] train-mlogloss:0.343014 val-mlogloss:0.52897
[831] train-mlogloss:0.342872 val-mlogloss:0.528954
[832] train-mlogloss:0.342719 val-mlogloss:0.528967
[833] train-mlogloss:0.342546 val-mlogloss:0.529004
[834] train-mlogloss:0.342424 val-mlogloss:0.529021
[835] train-mlogloss:0.342271 val-mlogloss:0.529062
[836] train-mlogloss:0.342078 val-mlogloss:0.529077
[837] train-mlogloss:0.341906 val-mlogloss:0.529063
[838] train-mlogloss:0.341761 val-mlogloss:0.529085
[839] train-mlogloss:0.341572 val-mlogloss:0.52909
[840] train-mlogloss:0.341412 val-mlogloss:0.529101
[841] train-mlogloss:0.341252 val-mlogloss:0.529133
[842] train-mlogloss:0.341154 val-mlogloss:0.52911
[843] train-mlogloss:0.341 val-mlogloss:0.529061
[844] train-mlogloss:0.340813 val-mlogloss:0.529042
[845] train-mlogloss:0.340673 val-mlogloss:0.529046
[846] train-mlogloss:0.340509 val-mlogloss:0.529041
[847] train-mlogloss:0.340348 val-mlogloss:0.529069
[848] train-mlogloss:0.340182 val-mlogloss:0.529056
[849] train-mlogloss:0.340047 val-mlogloss:0.529058
[850] train-mlogloss:0.339936 val-mlogloss:0.529047
[851] train-mlogloss:0.339801 val-mlogloss:0.529016
[852] train-mlogloss:0.339628 val-mlogloss:0.52904
[853] train-mlogloss:0.339452 val-mlogloss:0.529004
[854] train-mlogloss:0.339274 val-mlogloss:0.52898
[855] train-mlogloss:0.339145 val-mlogloss:0.528971
[856] train-mlogloss:0.338951 val-mlogloss:0.528997
[857] train-mlogloss:0.338813 val-mlogloss:0.529011
[858] train-mlogloss:0.338664 val-mlogloss:0.529022
[859] train-mlogloss:0.338537 val-mlogloss:0.529038
[860] train-mlogloss:0.338379 val-mlogloss:0.529039
[861] train-mlogloss:0.338255 val-mlogloss:0.52904
[862] train-mlogloss:0.338115 val-mlogloss:0.529058
Stopping. Best iteration:
[812] train-mlogloss:0.345931 val-mlogloss:0.528806
[0] train-mlogloss:1.078 val-mlogloss:1.07854
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.
Will train until val-mlogloss hasn't improved in 50 rounds.
[1] train-mlogloss:1.05838 val-mlogloss:1.05926
[2] train-mlogloss:1.0395 val-mlogloss:1.04091
[3] train-mlogloss:1.02156 val-mlogloss:1.02338
[4] train-mlogloss:1.00447 val-mlogloss:1.00668
[5] train-mlogloss:0.988109 val-mlogloss:0.990719
[6] train-mlogloss:0.97252 val-mlogloss:0.975535
[7] train-mlogloss:0.957648 val-mlogloss:0.96101
[8] train-mlogloss:0.943645 val-mlogloss:0.947351
[9] train-mlogloss:0.929912 val-mlogloss:0.934029
[10] train-mlogloss:0.916797 val-mlogloss:0.921278
[11] train-mlogloss:0.904248 val-mlogloss:0.908961
[12] train-mlogloss:0.892116 val-mlogloss:0.897169
[13] train-mlogloss:0.880533 val-mlogloss:0.885966
[14] train-mlogloss:0.869777 val-mlogloss:0.875586
[15] train-mlogloss:0.859157 val-mlogloss:0.865385
[16] train-mlogloss:0.848955 val-mlogloss:0.85548
[17] train-mlogloss:0.839074 val-mlogloss:0.845915
[18] train-mlogloss:0.829461 val-mlogloss:0.836576
[19] train-mlogloss:0.820252 val-mlogloss:0.827593
[20] train-mlogloss:0.811411 val-mlogloss:0.819085
[21] train-mlogloss:0.802868 val-mlogloss:0.810883
[22] train-mlogloss:0.79472 val-mlogloss:0.802979
[23] train-mlogloss:0.78682 val-mlogloss:0.795381
[24] train-mlogloss:0.779531 val-mlogloss:0.788368
[25] train-mlogloss:0.772252 val-mlogloss:0.781388
[26] train-mlogloss:0.765164 val-mlogloss:0.774643
[27] train-mlogloss:0.758381 val-mlogloss:0.768154
[28] train-mlogloss:0.751713 val-mlogloss:0.761825
[29] train-mlogloss:0.745232 val-mlogloss:0.755654
[30] train-mlogloss:0.739061 val-mlogloss:0.749747
[31] train-mlogloss:0.733079 val-mlogloss:0.744019
[32] train-mlogloss:0.727369 val-mlogloss:0.738503
[33] train-mlogloss:0.721756 val-mlogloss:0.733211
[34] train-mlogloss:0.716399 val-mlogloss:0.72808
[35] train-mlogloss:0.711077 val-mlogloss:0.72303
[36] train-mlogloss:0.706048 val-mlogloss:0.7182
[37] train-mlogloss:0.701221 val-mlogloss:0.71359
[38] train-mlogloss:0.696473 val-mlogloss:0.709147
[39] train-mlogloss:0.691877 val-mlogloss:0.704882
[40] train-mlogloss:0.687404 val-mlogloss:0.700675
[41] train-mlogloss:0.683091 val-mlogloss:0.696693
[42] train-mlogloss:0.678879 val-mlogloss:0.692759
[43] train-mlogloss:0.67483 val-mlogloss:0.68896
[44] train-mlogloss:0.670928 val-mlogloss:0.685356
[45] train-mlogloss:0.667148 val-mlogloss:0.68181
[46] train-mlogloss:0.663428 val-mlogloss:0.678469
[47] train-mlogloss:0.659945 val-mlogloss:0.675224
[48] train-mlogloss:0.656485 val-mlogloss:0.672077
[49] train-mlogloss:0.653107 val-mlogloss:0.66905
[50] train-mlogloss:0.649844 val-mlogloss:0.666073
[51] train-mlogloss:0.646588 val-mlogloss:0.66319
[52] train-mlogloss:0.643418 val-mlogloss:0.660272
[53] train-mlogloss:0.64037 val-mlogloss:0.657494
[54] train-mlogloss:0.637434 val-mlogloss:0.654836
[55] train-mlogloss:0.634658 val-mlogloss:0.652281
[56] train-mlogloss:0.631957 val-mlogloss:0.649871
[57] train-mlogloss:0.629209 val-mlogloss:0.647372
[58] train-mlogloss:0.626469 val-mlogloss:0.644922
[59] train-mlogloss:0.62394 val-mlogloss:0.642679
[60] train-mlogloss:0.621431 val-mlogloss:0.640419
[61] train-mlogloss:0.618958 val-mlogloss:0.638179
[62] train-mlogloss:0.616554 val-mlogloss:0.636021
[63] train-mlogloss:0.614231 val-mlogloss:0.633987
[64] train-mlogloss:0.611928 val-mlogloss:0.631921
[65] train-mlogloss:0.609687 val-mlogloss:0.629971
[66] train-mlogloss:0.607554 val-mlogloss:0.628088
[67] train-mlogloss:0.605461 val-mlogloss:0.626329
[68] train-mlogloss:0.603374 val-mlogloss:0.624502
[69] train-mlogloss:0.601335 val-mlogloss:0.622744
[70] train-mlogloss:0.599369 val-mlogloss:0.621052
[71] train-mlogloss:0.597452 val-mlogloss:0.619411
[72] train-mlogloss:0.595599 val-mlogloss:0.617778
[73] train-mlogloss:0.593666 val-mlogloss:0.61616
[74] train-mlogloss:0.591857 val-mlogloss:0.614607
[75] train-mlogloss:0.590084 val-mlogloss:0.613155
[76] train-mlogloss:0.588395 val-mlogloss:0.611659
[77] train-mlogloss:0.586673 val-mlogloss:0.610093
[78] train-mlogloss:0.585048 val-mlogloss:0.608773
[79] train-mlogloss:0.583448 val-mlogloss:0.607423
[80] train-mlogloss:0.581938 val-mlogloss:0.606183
[81] train-mlogloss:0.580435 val-mlogloss:0.604947
[82] train-mlogloss:0.579007 val-mlogloss:0.603798
[83] train-mlogloss:0.577557 val-mlogloss:0.602594
[84] train-mlogloss:0.576182 val-mlogloss:0.601433
[85] train-mlogloss:0.574801 val-mlogloss:0.600222
[86] train-mlogloss:0.573377 val-mlogloss:0.599003
[87] train-mlogloss:0.572076 val-mlogloss:0.597922
[88] train-mlogloss:0.57074 val-mlogloss:0.596781
[89] train-mlogloss:0.569409 val-mlogloss:0.595688
[90] train-mlogloss:0.568155 val-mlogloss:0.594672
[91] train-mlogloss:0.566838 val-mlogloss:0.593646
[92] train-mlogloss:0.565568 val-mlogloss:0.592586
[93] train-mlogloss:0.564356 val-mlogloss:0.591632
[94] train-mlogloss:0.563111 val-mlogloss:0.590669
[95] train-mlogloss:0.562065 val-mlogloss:0.589811
[96] train-mlogloss:0.560951 val-mlogloss:0.588941
[97] train-mlogloss:0.559821 val-mlogloss:0.58811
[98] train-mlogloss:0.558781 val-mlogloss:0.587279
[99] train-mlogloss:0.557637 val-mlogloss:0.586385
[100] train-mlogloss:0.556571 val-mlogloss:0.585549
[101] train-mlogloss:0.555507 val-mlogloss:0.584762
[102] train-mlogloss:0.554522 val-mlogloss:0.583991
[103] train-mlogloss:0.553528 val-mlogloss:0.583171
[104] train-mlogloss:0.552509 val-mlogloss:0.582413
[105] train-mlogloss:0.551488 val-mlogloss:0.581624
[106] train-mlogloss:0.550477 val-mlogloss:0.580861
[107] train-mlogloss:0.549536 val-mlogloss:0.580146
[108] train-mlogloss:0.548559 val-mlogloss:0.579415
[109] train-mlogloss:0.547608 val-mlogloss:0.578645
[110] train-mlogloss:0.546813 val-mlogloss:0.578095
[111] train-mlogloss:0.545947 val-mlogloss:0.577443
[112] train-mlogloss:0.545066 val-mlogloss:0.576827
[113] train-mlogloss:0.544068 val-mlogloss:0.576131
[114] train-mlogloss:0.543099 val-mlogloss:0.575467
[115] train-mlogloss:0.542191 val-mlogloss:0.574828
[116] train-mlogloss:0.541443 val-mlogloss:0.574251
[117] train-mlogloss:0.540685 val-mlogloss:0.573709
[118] train-mlogloss:0.53988 val-mlogloss:0.5731
[119] train-mlogloss:0.539055 val-mlogloss:0.572553
[120] train-mlogloss:0.538308 val-mlogloss:0.572008
[121] train-mlogloss:0.537532 val-mlogloss:0.5715
[122] train-mlogloss:0.536817 val-mlogloss:0.571029
[123] train-mlogloss:0.5361 val-mlogloss:0.570529
[124] train-mlogloss:0.535387 val-mlogloss:0.570097
[125] train-mlogloss:0.534624 val-mlogloss:0.569509
[126] train-mlogloss:0.533941 val-mlogloss:0.569051
[127] train-mlogloss:0.533261 val-mlogloss:0.568553
[128] train-mlogloss:0.532662 val-mlogloss:0.568142
[129] train-mlogloss:0.531976 val-mlogloss:0.567702
[130] train-mlogloss:0.531263 val-mlogloss:0.56726
[131] train-mlogloss:0.530579 val-mlogloss:0.566804
[132] train-mlogloss:0.529914 val-mlogloss:0.566355
[133] train-mlogloss:0.529146 val-mlogloss:0.565838
[134] train-mlogloss:0.528372 val-mlogloss:0.565325
[135] train-mlogloss:0.527586 val-mlogloss:0.56482
[136] train-mlogloss:0.526946 val-mlogloss:0.5644
[137] train-mlogloss:0.526318 val-mlogloss:0.563997
[138] train-mlogloss:0.525646 val-mlogloss:0.56357
[139] train-mlogloss:0.525087 val-mlogloss:0.563192
[140] train-mlogloss:0.524516 val-mlogloss:0.562833
[141] train-mlogloss:0.523932 val-mlogloss:0.562502
[142] train-mlogloss:0.52337 val-mlogloss:0.562144
[143] train-mlogloss:0.522797 val-mlogloss:0.56179
[144] train-mlogloss:0.522291 val-mlogloss:0.561436
[145] train-mlogloss:0.52165 val-mlogloss:0.561031
[146] train-mlogloss:0.520978 val-mlogloss:0.560648
[147] train-mlogloss:0.520288 val-mlogloss:0.560212
[148] train-mlogloss:0.519684 val-mlogloss:0.55979
[149] train-mlogloss:0.518985 val-mlogloss:0.559403
[150] train-mlogloss:0.518446 val-mlogloss:0.559064
[151] train-mlogloss:0.517833 val-mlogloss:0.558647
[152] train-mlogloss:0.517251 val-mlogloss:0.558316
[153] train-mlogloss:0.516719 val-mlogloss:0.558012
[154] train-mlogloss:0.516263 val-mlogloss:0.557748
[155] train-mlogloss:0.515715 val-mlogloss:0.557373
[156] train-mlogloss:0.515111 val-mlogloss:0.556965
[157] train-mlogloss:0.514464 val-mlogloss:0.556587
[158] train-mlogloss:0.513961 val-mlogloss:0.55637
[159] train-mlogloss:0.513409 val-mlogloss:0.555999
[160] train-mlogloss:0.512925 val-mlogloss:0.555658
[161] train-mlogloss:0.512395 val-mlogloss:0.555377
[162] train-mlogloss:0.511972 val-mlogloss:0.555174
[163] train-mlogloss:0.511404 val-mlogloss:0.554854
[164] train-mlogloss:0.510855 val-mlogloss:0.554543
[165] train-mlogloss:0.510246 val-mlogloss:0.554223
[166] train-mlogloss:0.509603 val-mlogloss:0.553921
[167] train-mlogloss:0.509022 val-mlogloss:0.553626
[168] train-mlogloss:0.508429 val-mlogloss:0.553329
[169] train-mlogloss:0.507996 val-mlogloss:0.553115
[170] train-mlogloss:0.507547 val-mlogloss:0.55287
[171] train-mlogloss:0.507051 val-mlogloss:0.552572
[172] train-mlogloss:0.506624 val-mlogloss:0.552307
[173] train-mlogloss:0.506127 val-mlogloss:0.552045
[174] train-mlogloss:0.505663 val-mlogloss:0.551771
[175] train-mlogloss:0.505127 val-mlogloss:0.551501
[176] train-mlogloss:0.504714 val-mlogloss:0.551294
[177] train-mlogloss:0.504072 val-mlogloss:0.550971
[178] train-mlogloss:0.503553 val-mlogloss:0.550729
[179] train-mlogloss:0.503046 val-mlogloss:0.550457
[180] train-mlogloss:0.502547 val-mlogloss:0.550219
[181] train-mlogloss:0.501997 val-mlogloss:0.549913
[182] train-mlogloss:0.501533 val-mlogloss:0.54967
[183] train-mlogloss:0.501068 val-mlogloss:0.549488
[184] train-mlogloss:0.500482 val-mlogloss:0.549217
[185] train-mlogloss:0.500044 val-mlogloss:0.54897
[186] train-mlogloss:0.499613 val-mlogloss:0.548765
[187] train-mlogloss:0.499127 val-mlogloss:0.548537
[188] train-mlogloss:0.498686 val-mlogloss:0.548272
[189] train-mlogloss:0.498142 val-mlogloss:0.547992
[190] train-mlogloss:0.497801 val-mlogloss:0.547782
[191] train-mlogloss:0.497219 val-mlogloss:0.547497
[192] train-mlogloss:0.49669 val-mlogloss:0.547308
[193] train-mlogloss:0.496191 val-mlogloss:0.54703
[194] train-mlogloss:0.495725 val-mlogloss:0.546839
[195] train-mlogloss:0.495359 val-mlogloss:0.546669
[196] train-mlogloss:0.49494 val-mlogloss:0.54651
[197] train-mlogloss:0.494472 val-mlogloss:0.546267
[198] train-mlogloss:0.494085 val-mlogloss:0.546121
[199] train-mlogloss:0.493582 val-mlogloss:0.545925
[200] train-mlogloss:0.493174 val-mlogloss:0.54576
[201] train-mlogloss:0.492775 val-mlogloss:0.545578
[202] train-mlogloss:0.492451 val-mlogloss:0.545403
[203] train-mlogloss:0.492091 val-mlogloss:0.545262
[204] train-mlogloss:0.491646 val-mlogloss:0.545066
[205] train-mlogloss:0.491296 val-mlogloss:0.544885
[206] train-mlogloss:0.490905 val-mlogloss:0.544703
[207] train-mlogloss:0.490515 val-mlogloss:0.544512
[208] train-mlogloss:0.490084 val-mlogloss:0.544313
[209] train-mlogloss:0.489776 val-mlogloss:0.544121
[210] train-mlogloss:0.489361 val-mlogloss:0.54389
[211] train-mlogloss:0.488899 val-mlogloss:0.543696
[212] train-mlogloss:0.488439 val-mlogloss:0.543534
[213] train-mlogloss:0.487968 val-mlogloss:0.543335
[214] train-mlogloss:0.487517 val-mlogloss:0.543197
[215] train-mlogloss:0.487138 val-mlogloss:0.543061
[216] train-mlogloss:0.486747 val-mlogloss:0.542873
[217] train-mlogloss:0.486331 val-mlogloss:0.542708
[218] train-mlogloss:0.485958 val-mlogloss:0.542498
[219] train-mlogloss:0.485549 val-mlogloss:0.54242
[220] train-mlogloss:0.485127 val-mlogloss:0.54226
[221] train-mlogloss:0.484838 val-mlogloss:0.542113
[222] train-mlogloss:0.484514 val-mlogloss:0.541951
[223] train-mlogloss:0.484086 val-mlogloss:0.541822
[224] train-mlogloss:0.483654 val-mlogloss:0.541698
[225] train-mlogloss:0.483205 val-mlogloss:0.541554
[226] train-mlogloss:0.482871 val-mlogloss:0.541421
[227] train-mlogloss:0.482407 val-mlogloss:0.541173
[228] train-mlogloss:0.481985 val-mlogloss:0.54095
[229] train-mlogloss:0.481638 val-mlogloss:0.540842
[230] train-mlogloss:0.481312 val-mlogloss:0.540718
[231] train-mlogloss:0.48088 val-mlogloss:0.540563
[232] train-mlogloss:0.48057 val-mlogloss:0.540435
[233] train-mlogloss:0.480313 val-mlogloss:0.540336
[234] train-mlogloss:0.479865 val-mlogloss:0.540166
[235] train-mlogloss:0.47938 val-mlogloss:0.539981
[236] train-mlogloss:0.478965 val-mlogloss:0.539845
[237] train-mlogloss:0.478708 val-mlogloss:0.539706
[238] train-mlogloss:0.478378 val-mlogloss:0.539599
[239] train-mlogloss:0.478048 val-mlogloss:0.539468
[240] train-mlogloss:0.477626 val-mlogloss:0.539287
[241] train-mlogloss:0.477329 val-mlogloss:0.539173
[242] train-mlogloss:0.477034 val-mlogloss:0.53907
[243] train-mlogloss:0.4767 val-mlogloss:0.538949
[244] train-mlogloss:0.47633 val-mlogloss:0.538832
[245] train-mlogloss:0.475924 val-mlogloss:0.538685
[246] train-mlogloss:0.475476 val-mlogloss:0.538537
[247] train-mlogloss:0.475135 val-mlogloss:0.5384
[248] train-mlogloss:0.474746 val-mlogloss:0.538285
[249] train-mlogloss:0.4743 val-mlogloss:0.538137
[250] train-mlogloss:0.473915 val-mlogloss:0.538076
[251] train-mlogloss:0.473628 val-mlogloss:0.538012
[252] train-mlogloss:0.473262 val-mlogloss:0.537888
[253] train-mlogloss:0.472957 val-mlogloss:0.537748
[254] train-mlogloss:0.472629 val-mlogloss:0.537644
[255] train-mlogloss:0.472147 val-mlogloss:0.537508
[256] train-mlogloss:0.471879 val-mlogloss:0.537434
[257] train-mlogloss:0.471513 val-mlogloss:0.537332
[258] train-mlogloss:0.471159 val-mlogloss:0.537182
[259] train-mlogloss:0.470827 val-mlogloss:0.537081
[260] train-mlogloss:0.47036 val-mlogloss:0.536875
[261] train-mlogloss:0.470005 val-mlogloss:0.53677
[262] train-mlogloss:0.469763 val-mlogloss:0.536685
[263] train-mlogloss:0.469381 val-mlogloss:0.536551
[264] train-mlogloss:0.469128 val-mlogloss:0.536436
[265] train-mlogloss:0.468906 val-mlogloss:0.536342
[266] train-mlogloss:0.468611 val-mlogloss:0.536205
[267] train-mlogloss:0.468315 val-mlogloss:0.536078
[268] train-mlogloss:0.467987 val-mlogloss:0.535962
[269] train-mlogloss:0.467701 val-mlogloss:0.535843
[270] train-mlogloss:0.467391 val-mlogloss:0.535747
[271] train-mlogloss:0.467069 val-mlogloss:0.535663
[272] train-mlogloss:0.466763 val-mlogloss:0.535582
[273] train-mlogloss:0.466438 val-mlogloss:0.535469
[274] train-mlogloss:0.466165 val-mlogloss:0.535356
[275] train-mlogloss:0.465826 val-mlogloss:0.535297
[276] train-mlogloss:0.46545 val-mlogloss:0.535195
[277] train-mlogloss:0.46522 val-mlogloss:0.535098
[278] train-mlogloss:0.464907 val-mlogloss:0.534966
[279] train-mlogloss:0.46458 val-mlogloss:0.534871
[280] train-mlogloss:0.464355 val-mlogloss:0.534766
[281] train-mlogloss:0.464047 val-mlogloss:0.534714
[282] train-mlogloss:0.463633 val-mlogloss:0.534616
[283] train-mlogloss:0.463285 val-mlogloss:0.534495
[284] train-mlogloss:0.462992 val-mlogloss:0.534423
[285] train-mlogloss:0.4627 val-mlogloss:0.534307
[286] train-mlogloss:0.462363 val-mlogloss:0.534171
[287] train-mlogloss:0.462075 val-mlogloss:0.534064
[288] train-mlogloss:0.461732 val-mlogloss:0.533916
[289] train-mlogloss:0.461451 val-mlogloss:0.533849
[290] train-mlogloss:0.461108 val-mlogloss:0.533709
[291] train-mlogloss:0.460676 val-mlogloss:0.533598
[292] train-mlogloss:0.460348 val-mlogloss:0.533506
[293] train-mlogloss:0.459903 val-mlogloss:0.533359
[294] train-mlogloss:0.459632 val-mlogloss:0.533322
[295] train-mlogloss:0.459362 val-mlogloss:0.533223
[296] train-mlogloss:0.459052 val-mlogloss:0.53315
[297] train-mlogloss:0.458764 val-mlogloss:0.533036
[298] train-mlogloss:0.458432 val-mlogloss:0.532888
[299] train-mlogloss:0.458125 val-mlogloss:0.532727
[300] train-mlogloss:0.457807 val-mlogloss:0.532638
[301] train-mlogloss:0.457456 val-mlogloss:0.532553
[302] train-mlogloss:0.457271 val-mlogloss:0.532453
[303] train-mlogloss:0.457007 val-mlogloss:0.532347
[304] train-mlogloss:0.456692 val-mlogloss:0.532249
[305] train-mlogloss:0.456407 val-mlogloss:0.532122
[306] train-mlogloss:0.456079 val-mlogloss:0.532021
[307] train-mlogloss:0.455707 val-mlogloss:0.53187
[308] train-mlogloss:0.455383 val-mlogloss:0.531769
[309] train-mlogloss:0.455077 val-mlogloss:0.531661
[310] train-mlogloss:0.454732 val-mlogloss:0.531543
[311] train-mlogloss:0.454411 val-mlogloss:0.531433
[312] train-mlogloss:0.454102 val-mlogloss:0.531369
[313] train-mlogloss:0.45377 val-mlogloss:0.531265
[314] train-mlogloss:0.453362 val-mlogloss:0.531118
[315] train-mlogloss:0.453119 val-mlogloss:0.531053
[316] train-mlogloss:0.452836 val-mlogloss:0.530966
[317] train-mlogloss:0.452603 val-mlogloss:0.530894
[318] train-mlogloss:0.452305 val-mlogloss:0.530829
[319] train-mlogloss:0.452017 val-mlogloss:0.530762
[320] train-mlogloss:0.451757 val-mlogloss:0.530687
[321] train-mlogloss:0.451468 val-mlogloss:0.530648
[322] train-mlogloss:0.451282 val-mlogloss:0.530634
[323] train-mlogloss:0.451053 val-mlogloss:0.53056
[324] train-mlogloss:0.450684 val-mlogloss:0.530549
[325] train-mlogloss:0.450338 val-mlogloss:0.530519
[326] train-mlogloss:0.450024 val-mlogloss:0.530484
[327] train-mlogloss:0.449804 val-mlogloss:0.530447
[328] train-mlogloss:0.449524 val-mlogloss:0.530349
[329] train-mlogloss:0.449252 val-mlogloss:0.530292
[330] train-mlogloss:0.448969 val-mlogloss:0.530226
[331] train-mlogloss:0.448641 val-mlogloss:0.530126
[332] train-mlogloss:0.448271 val-mlogloss:0.530016
[333] train-mlogloss:0.447975 val-mlogloss:0.529954
[334] train-mlogloss:0.447653 val-mlogloss:0.529848
[335] train-mlogloss:0.447314 val-mlogloss:0.529723
[336] train-mlogloss:0.447119 val-mlogloss:0.529688
[337] train-mlogloss:0.446868 val-mlogloss:0.529596
[338] train-mlogloss:0.446694 val-mlogloss:0.529564
[339] train-mlogloss:0.446355 val-mlogloss:0.529481
[340] train-mlogloss:0.446209 val-mlogloss:0.529429
[341] train-mlogloss:0.445896 val-mlogloss:0.529304
[342] train-mlogloss:0.445586 val-mlogloss:0.529207
[343] train-mlogloss:0.445386 val-mlogloss:0.529149
[344] train-mlogloss:0.445056 val-mlogloss:0.529074
[345] train-mlogloss:0.444781 val-mlogloss:0.529008
[346] train-mlogloss:0.444521 val-mlogloss:0.52896
[347] train-mlogloss:0.444127 val-mlogloss:0.528839
[348] train-mlogloss:0.443855 val-mlogloss:0.528796
[349] train-mlogloss:0.443658 val-mlogloss:0.528777
[350] train-mlogloss:0.443406 val-mlogloss:0.528697
[351] train-mlogloss:0.443179 val-mlogloss:0.528662
[352] train-mlogloss:0.442927 val-mlogloss:0.528598
[353] train-mlogloss:0.442679 val-mlogloss:0.528513
[354] train-mlogloss:0.442484 val-mlogloss:0.528502
[355] train-mlogloss:0.442301 val-mlogloss:0.528424
[356] train-mlogloss:0.442093 val-mlogloss:0.52836
[357] train-mlogloss:0.441789 val-mlogloss:0.528297
[358] train-mlogloss:0.441415 val-mlogloss:0.528278
[359] train-mlogloss:0.441197 val-mlogloss:0.528241
[360] train-mlogloss:0.440888 val-mlogloss:0.528236
[361] train-mlogloss:0.440627 val-mlogloss:0.528151
[362] train-mlogloss:0.440421 val-mlogloss:0.528077
[363] train-mlogloss:0.440124 val-mlogloss:0.528014
[364] train-mlogloss:0.439805 val-mlogloss:0.527932
[365] train-mlogloss:0.439513 val-mlogloss:0.527801
[366] train-mlogloss:0.439196 val-mlogloss:0.52769
[367] train-mlogloss:0.438907 val-mlogloss:0.527669
[368] train-mlogloss:0.438627 val-mlogloss:0.52758
[369] train-mlogloss:0.438366 val-mlogloss:0.527564
[370] train-mlogloss:0.438162 val-mlogloss:0.527532
[371] train-mlogloss:0.437888 val-mlogloss:0.527449
[372] train-mlogloss:0.437631 val-mlogloss:0.527371
[373] train-mlogloss:0.437315 val-mlogloss:0.52728
[374] train-mlogloss:0.437101 val-mlogloss:0.527211
[375] train-mlogloss:0.436825 val-mlogloss:0.527167
[376] train-mlogloss:0.436582 val-mlogloss:0.527117
[377] train-mlogloss:0.43637 val-mlogloss:0.527047
[378] train-mlogloss:0.436175 val-mlogloss:0.527013
[379] train-mlogloss:0.435917 val-mlogloss:0.526948
[380] train-mlogloss:0.435739 val-mlogloss:0.526926
[381] train-mlogloss:0.435526 val-mlogloss:0.526868
[382] train-mlogloss:0.435245 val-mlogloss:0.526843
[383] train-mlogloss:0.434955 val-mlogloss:0.526786
[384] train-mlogloss:0.434638 val-mlogloss:0.526715
[385] train-mlogloss:0.434446 val-mlogloss:0.526662
[386] train-mlogloss:0.434248 val-mlogloss:0.526598
[387] train-mlogloss:0.433923 val-mlogloss:0.52652
[388] train-mlogloss:0.433658 val-mlogloss:0.526465
[389] train-mlogloss:0.433451 val-mlogloss:0.526401
[390] train-mlogloss:0.433194 val-mlogloss:0.526359
[391] train-mlogloss:0.433064 val-mlogloss:0.526312
[392] train-mlogloss:0.432692 val-mlogloss:0.526284
[393] train-mlogloss:0.432391 val-mlogloss:0.526258
[394] train-mlogloss:0.432128 val-mlogloss:0.526192
[395] train-mlogloss:0.431955 val-mlogloss:0.526137
[396] train-mlogloss:0.431621 val-mlogloss:0.526058
[397] train-mlogloss:0.431309 val-mlogloss:0.525995
[398] train-mlogloss:0.431049 val-mlogloss:0.525943
[399] train-mlogloss:0.430825 val-mlogloss:0.525903
[400] train-mlogloss:0.430637 val-mlogloss:0.525838
[401] train-mlogloss:0.43037 val-mlogloss:0.525777
[402] train-mlogloss:0.430114 val-mlogloss:0.525731
[403] train-mlogloss:0.429875 val-mlogloss:0.52568
[404] train-mlogloss:0.429697 val-mlogloss:0.525669
[405] train-mlogloss:0.429358 val-mlogloss:0.525633
[406] train-mlogloss:0.429149 val-mlogloss:0.525597
[407] train-mlogloss:0.42892 val-mlogloss:0.525564
[408] train-mlogloss:0.42871 val-mlogloss:0.525499
[409] train-mlogloss:0.428345 val-mlogloss:0.525404
[410] train-mlogloss:0.428042 val-mlogloss:0.52538
[411] train-mlogloss:0.427747 val-mlogloss:0.525338
[412] train-mlogloss:0.427522 val-mlogloss:0.525286
[413] train-mlogloss:0.427232 val-mlogloss:0.525256
[414] train-mlogloss:0.426947 val-mlogloss:0.525182
[415] train-mlogloss:0.426664 val-mlogloss:0.525129
[416] train-mlogloss:0.426398 val-mlogloss:0.525065
[417] train-mlogloss:0.426222 val-mlogloss:0.525005
[418] train-mlogloss:0.425978 val-mlogloss:0.524957
[419] train-mlogloss:0.425699 val-mlogloss:0.524904
[420] train-mlogloss:0.425431 val-mlogloss:0.524847
[421] train-mlogloss:0.425124 val-mlogloss:0.524797
[422] train-mlogloss:0.424942 val-mlogloss:0.524781
[423] train-mlogloss:0.424736 val-mlogloss:0.524761
[424] train-mlogloss:0.424393 val-mlogloss:0.524732
[425] train-mlogloss:0.424121 val-mlogloss:0.524707
[426] train-mlogloss:0.423893 val-mlogloss:0.524673
[427] train-mlogloss:0.423576 val-mlogloss:0.524591
[428] train-mlogloss:0.423339 val-mlogloss:0.524588
[429] train-mlogloss:0.423094 val-mlogloss:0.524538
[430] train-mlogloss:0.422933 val-mlogloss:0.524504
[431] train-mlogloss:0.422607 val-mlogloss:0.524405
[432] train-mlogloss:0.422365 val-mlogloss:0.524358
[433] train-mlogloss:0.422083 val-mlogloss:0.524274
[434] train-mlogloss:0.421823 val-mlogloss:0.524239
[435] train-mlogloss:0.421537 val-mlogloss:0.524166
[436] train-mlogloss:0.421272 val-mlogloss:0.524151
[437] train-mlogloss:0.421057 val-mlogloss:0.524088
[438] train-mlogloss:0.420857 val-mlogloss:0.524081
[439] train-mlogloss:0.420657 val-mlogloss:0.524059
[440] train-mlogloss:0.420451 val-mlogloss:0.524078
[441] train-mlogloss:0.420215 val-mlogloss:0.52403
[442] train-mlogloss:0.419973 val-mlogloss:0.524018
[443] train-mlogloss:0.419728 val-mlogloss:0.523946
[444] train-mlogloss:0.419477 val-mlogloss:0.523866
[445] train-mlogloss:0.419194 val-mlogloss:0.523818
[446] train-mlogloss:0.419 val-mlogloss:0.523734
[447] train-mlogloss:0.418725 val-mlogloss:0.523707
[448] train-mlogloss:0.41852 val-mlogloss:0.523682
[449] train-mlogloss:0.418249 val-mlogloss:0.523641
[450] train-mlogloss:0.41801 val-mlogloss:0.523607
[451] train-mlogloss:0.417838 val-mlogloss:0.523593
[452] train-mlogloss:0.417635 val-mlogloss:0.52354
[453] train-mlogloss:0.41743 val-mlogloss:0.523465
[454] train-mlogloss:0.417217 val-mlogloss:0.523417
[455] train-mlogloss:0.416962 val-mlogloss:0.523386
[456] train-mlogloss:0.4167 val-mlogloss:0.523322
[457] train-mlogloss:0.41646 val-mlogloss:0.523294
[458] train-mlogloss:0.416294 val-mlogloss:0.523228
[459] train-mlogloss:0.416081 val-mlogloss:0.523186
[460] train-mlogloss:0.415866 val-mlogloss:0.523181
[461] train-mlogloss:0.415651 val-mlogloss:0.523143
[462] train-mlogloss:0.415375 val-mlogloss:0.523109
[463] train-mlogloss:0.415198 val-mlogloss:0.523087
[464] train-mlogloss:0.414903 val-mlogloss:0.52303
[465] train-mlogloss:0.414678 val-mlogloss:0.523002
[466] train-mlogloss:0.41454 val-mlogloss:0.522969
[467] train-mlogloss:0.414415 val-mlogloss:0.52293
[468] train-mlogloss:0.414201 val-mlogloss:0.522877
[469] train-mlogloss:0.413978 val-mlogloss:0.522819
[470] train-mlogloss:0.413753 val-mlogloss:0.522734
[471] train-mlogloss:0.413539 val-mlogloss:0.522755
[472] train-mlogloss:0.4133 val-mlogloss:0.522725
[473] train-mlogloss:0.41316 val-mlogloss:0.522744
[474] train-mlogloss:0.413008 val-mlogloss:0.522706
[475] train-mlogloss:0.412824 val-mlogloss:0.522699
[476] train-mlogloss:0.412643 val-mlogloss:0.522654
[477] train-mlogloss:0.412423 val-mlogloss:0.522616
[478] train-mlogloss:0.412194 val-mlogloss:0.522575
[479] train-mlogloss:0.411964 val-mlogloss:0.522502
[480] train-mlogloss:0.411694 val-mlogloss:0.522452
[481] train-mlogloss:0.41142 val-mlogloss:0.522394
[482] train-mlogloss:0.411237 val-mlogloss:0.522391
[483] train-mlogloss:0.411017 val-mlogloss:0.522425
[484] train-mlogloss:0.410702 val-mlogloss:0.522325
[485] train-mlogloss:0.410473 val-mlogloss:0.522301
[486] train-mlogloss:0.410211 val-mlogloss:0.522272
[487] train-mlogloss:0.409916 val-mlogloss:0.522242
[488] train-mlogloss:0.409665 val-mlogloss:0.52228
[489] train-mlogloss:0.409448 val-mlogloss:0.522248
[490] train-mlogloss:0.409222 val-mlogloss:0.522235
[491] train-mlogloss:0.409006 val-mlogloss:0.522235
[492] train-mlogloss:0.408714 val-mlogloss:0.522222
[493] train-mlogloss:0.40853 val-mlogloss:0.522156
[494] train-mlogloss:0.408348 val-mlogloss:0.522145
[495] train-mlogloss:0.408138 val-mlogloss:0.522067
[496] train-mlogloss:0.407875 val-mlogloss:0.521992
[497] train-mlogloss:0.407667 val-mlogloss:0.521956
[498] train-mlogloss:0.407429 val-mlogloss:0.5219
[499] train-mlogloss:0.407175 val-mlogloss:0.521866
[500] train-mlogloss:0.406994 val-mlogloss:0.521874
[501] train-mlogloss:0.40682 val-mlogloss:0.521871
[502] train-mlogloss:0.406629 val-mlogloss:0.521883
[503] train-mlogloss:0.406327 val-mlogloss:0.521843
[504] train-mlogloss:0.406179 val-mlogloss:0.521813
[505] train-mlogloss:0.405951 val-mlogloss:0.521706
[506] train-mlogloss:0.405745 val-mlogloss:0.521649
[507] train-mlogloss:0.405604 val-mlogloss:0.521655
[508] train-mlogloss:0.405449 val-mlogloss:0.521624
[509] train-mlogloss:0.405222 val-mlogloss:0.521625
[510] train-mlogloss:0.405007 val-mlogloss:0.521611
[511] train-mlogloss:0.404854 val-mlogloss:0.521562
[512] train-mlogloss:0.404639 val-mlogloss:0.521545
[513] train-mlogloss:0.404394 val-mlogloss:0.521514
[514] train-mlogloss:0.404161 val-mlogloss:0.521504
[515] train-mlogloss:0.403887 val-mlogloss:0.521443
[516] train-mlogloss:0.403691 val-mlogloss:0.521428
[517] train-mlogloss:0.403453 val-mlogloss:0.521436
[518] train-mlogloss:0.403186 val-mlogloss:0.521355
[519] train-mlogloss:0.403025 val-mlogloss:0.521351
[520] train-mlogloss:0.402814 val-mlogloss:0.521329
[521] train-mlogloss:0.402603 val-mlogloss:0.521318
[522] train-mlogloss:0.402391 val-mlogloss:0.521316
[523] train-mlogloss:0.402097 val-mlogloss:0.521264
[524] train-mlogloss:0.401872 val-mlogloss:0.521217
[525] train-mlogloss:0.401641 val-mlogloss:0.521174
[526] train-mlogloss:0.401455 val-mlogloss:0.521134
[527] train-mlogloss:0.401204 val-mlogloss:0.521116
[528] train-mlogloss:0.400974 val-mlogloss:0.52106
[529] train-mlogloss:0.400841 val-mlogloss:0.521076
[530] train-mlogloss:0.400627 val-mlogloss:0.521028
[531] train-mlogloss:0.40044 val-mlogloss:0.520992
[532] train-mlogloss:0.400231 val-mlogloss:0.520976
[533] train-mlogloss:0.400058 val-mlogloss:0.520972
[534] train-mlogloss:0.399881 val-mlogloss:0.520919
[535] train-mlogloss:0.399639 val-mlogloss:0.520901
[536] train-mlogloss:0.399364 val-mlogloss:0.520883
[537] train-mlogloss:0.399189 val-mlogloss:0.520825
[538] train-mlogloss:0.3989 val-mlogloss:0.52081
[539] train-mlogloss:0.398675 val-mlogloss:0.520736
[540] train-mlogloss:0.398533 val-mlogloss:0.520724
[541] train-mlogloss:0.3984 val-mlogloss:0.520743
[542] train-mlogloss:0.398208 val-mlogloss:0.520661
[543] train-mlogloss:0.397966 val-mlogloss:0.520597
[544] train-mlogloss:0.397769 val-mlogloss:0.520611
[545] train-mlogloss:0.397515 val-mlogloss:0.520587
[546] train-mlogloss:0.397265 val-mlogloss:0.520556
[547] train-mlogloss:0.397149 val-mlogloss:0.520545
[548] train-mlogloss:0.396881 val-mlogloss:0.520539
[549] train-mlogloss:0.396647 val-mlogloss:0.520505
[550] train-mlogloss:0.396472 val-mlogloss:0.520491
[551] train-mlogloss:0.39627 val-mlogloss:0.520487
[552] train-mlogloss:0.396056 val-mlogloss:0.520466
[553] train-mlogloss:0.395874 val-mlogloss:0.520428
[554] train-mlogloss:0.395706 val-mlogloss:0.520423
[555] train-mlogloss:0.395537 val-mlogloss:0.520402
[556] train-mlogloss:0.39533 val-mlogloss:0.520415
[557] train-mlogloss:0.395052 val-mlogloss:0.520391
[558] train-mlogloss:0.39481 val-mlogloss:0.520395
[559] train-mlogloss:0.39456 val-mlogloss:0.520358
[560] train-mlogloss:0.394344 val-mlogloss:0.52036
[561] train-mlogloss:0.394123 val-mlogloss:0.520335
[562] train-mlogloss:0.393932 val-mlogloss:0.520345
[563] train-mlogloss:0.393756 val-mlogloss:0.520332
[564] train-mlogloss:0.393516 val-mlogloss:0.520301
[565] train-mlogloss:0.393327 val-mlogloss:0.520272
[566] train-mlogloss:0.393052 val-mlogloss:0.520233
[567] train-mlogloss:0.392836 val-mlogloss:0.520226
[568] train-mlogloss:0.392584 val-mlogloss:0.52021
[569] train-mlogloss:0.392381 val-mlogloss:0.520178
[570] train-mlogloss:0.392201 val-mlogloss:0.520153
[571] train-mlogloss:0.39196 val-mlogloss:0.520123
[572] train-mlogloss:0.391789 val-mlogloss:0.52009
[573] train-mlogloss:0.391608 val-mlogloss:0.520033
[574] train-mlogloss:0.391401 val-mlogloss:0.520018
[575] train-mlogloss:0.39122 val-mlogloss:0.520021
[576] train-mlogloss:0.390979 val-mlogloss:0.51998
[577] train-mlogloss:0.390804 val-mlogloss:0.519992
[578] train-mlogloss:0.39054 val-mlogloss:0.519944
[579] train-mlogloss:0.39038 val-mlogloss:0.519937
[580] train-mlogloss:0.390167 val-mlogloss:0.519942
[581] train-mlogloss:0.389879 val-mlogloss:0.519977
[582] train-mlogloss:0.389663 val-mlogloss:0.519929
[583] train-mlogloss:0.389416 val-mlogloss:0.519904
[584] train-mlogloss:0.389234 val-mlogloss:0.519903
[585] train-mlogloss:0.389061 val-mlogloss:0.519881
[586] train-mlogloss:0.388953 val-mlogloss:0.519869
[587] train-mlogloss:0.388733 val-mlogloss:0.519842
[588] train-mlogloss:0.388603 val-mlogloss:0.519851
[589] train-mlogloss:0.388425 val-mlogloss:0.519771
[590] train-mlogloss:0.388292 val-mlogloss:0.519773
[591] train-mlogloss:0.388095 val-mlogloss:0.51976
[592] train-mlogloss:0.387889 val-mlogloss:0.519753
[593] train-mlogloss:0.387693 val-mlogloss:0.519759
[594] train-mlogloss:0.387474 val-mlogloss:0.519751
[595] train-mlogloss:0.387347 val-mlogloss:0.519733
[596] train-mlogloss:0.387128 val-mlogloss:0.51972
[597] train-mlogloss:0.386876 val-mlogloss:0.519706
[598] train-mlogloss:0.386695 val-mlogloss:0.519686
[599] train-mlogloss:0.386518 val-mlogloss:0.519684
[600] train-mlogloss:0.386325 val-mlogloss:0.519665
[601] train-mlogloss:0.386144 val-mlogloss:0.519626
[602] train-mlogloss:0.385904 val-mlogloss:0.519617
[603] train-mlogloss:0.385673 val-mlogloss:0.519608
[604] train-mlogloss:0.385496 val-mlogloss:0.519624
[605] train-mlogloss:0.385344 val-mlogloss:0.51963
[606] train-mlogloss:0.3851 val-mlogloss:0.51963
[607] train-mlogloss:0.384867 val-mlogloss:0.519623
[608] train-mlogloss:0.384659 val-mlogloss:0.519614
[609] train-mlogloss:0.384566 val-mlogloss:0.519606
[610] train-mlogloss:0.384375 val-mlogloss:0.519545
[611] train-mlogloss:0.384212 val-mlogloss:0.519547
[612] train-mlogloss:0.384099 val-mlogloss:0.519514
[613] train-mlogloss:0.383939 val-mlogloss:0.519487
[614] train-mlogloss:0.383756 val-mlogloss:0.519472
[615] train-mlogloss:0.383563 val-mlogloss:0.519454
[616] train-mlogloss:0.383396 val-mlogloss:0.519436
[617] train-mlogloss:0.383176 val-mlogloss:0.519383
[618] train-mlogloss:0.382945 val-mlogloss:0.519331
[619] train-mlogloss:0.38277 val-mlogloss:0.519296
[620] train-mlogloss:0.382624 val-mlogloss:0.519276
[621] train-mlogloss:0.382437 val-mlogloss:0.519248
[622] train-mlogloss:0.382291 val-mlogloss:0.519198
[623] train-mlogloss:0.382079 val-mlogloss:0.5192
[624] train-mlogloss:0.381857 val-mlogloss:0.519143
[625] train-mlogloss:0.381627 val-mlogloss:0.519109
[626] train-mlogloss:0.381482 val-mlogloss:0.519071
[627] train-mlogloss:0.3813 val-mlogloss:0.519093
[628] train-mlogloss:0.381126 val-mlogloss:0.519098
[629] train-mlogloss:0.380967 val-mlogloss:0.519048
[630] train-mlogloss:0.380701 val-mlogloss:0.519017
[631] train-mlogloss:0.380507 val-mlogloss:0.518993
[632] train-mlogloss:0.380335 val-mlogloss:0.518972
[633] train-mlogloss:0.380078 val-mlogloss:0.518975
[634] train-mlogloss:0.379883 val-mlogloss:0.518936
[635] train-mlogloss:0.379631 val-mlogloss:0.518899
[636] train-mlogloss:0.379429 val-mlogloss:0.518912
[637] train-mlogloss:0.379226 val-mlogloss:0.518894
[638] train-mlogloss:0.379061 val-mlogloss:0.518862
[639] train-mlogloss:0.378838 val-mlogloss:0.518882
[640] train-mlogloss:0.378625 val-mlogloss:0.518849
[641] train-mlogloss:0.378441 val-mlogloss:0.518802
[642] train-mlogloss:0.378299 val-mlogloss:0.51878
[643] train-mlogloss:0.378096 val-mlogloss:0.518753
[644] train-mlogloss:0.377925 val-mlogloss:0.51877
[645] train-mlogloss:0.377776 val-mlogloss:0.518762
[646] train-mlogloss:0.377591 val-mlogloss:0.518719
[647] train-mlogloss:0.377332 val-mlogloss:0.518674
[648] train-mlogloss:0.37706 val-mlogloss:0.518656
[649] train-mlogloss:0.376938 val-mlogloss:0.51865
[650] train-mlogloss:0.37677 val-mlogloss:0.518609
[651] train-mlogloss:0.376532 val-mlogloss:0.518606
[652] train-mlogloss:0.376337 val-mlogloss:0.51859
[653] train-mlogloss:0.376087 val-mlogloss:0.518608
[654] train-mlogloss:0.375902 val-mlogloss:0.518593
[655] train-mlogloss:0.37571 val-mlogloss:0.518572
[656] train-mlogloss:0.375529 val-mlogloss:0.518578
[657] train-mlogloss:0.375344 val-mlogloss:0.518534
[658] train-mlogloss:0.375199 val-mlogloss:0.518492
[659] train-mlogloss:0.375005 val-mlogloss:0.518484
[660] train-mlogloss:0.374861 val-mlogloss:0.518476
[661] train-mlogloss:0.374705 val-mlogloss:0.518437
[662] train-mlogloss:0.37459 val-mlogloss:0.518436
[663] train-mlogloss:0.374473 val-mlogloss:0.518416
[664] train-mlogloss:0.374321 val-mlogloss:0.518435
[665] train-mlogloss:0.37413 val-mlogloss:0.518449
[666] train-mlogloss:0.373987 val-mlogloss:0.51843
[667] train-mlogloss:0.373806 val-mlogloss:0.518416
[668] train-mlogloss:0.373606 val-mlogloss:0.5184
[669] train-mlogloss:0.37336 val-mlogloss:0.518376
[670] train-mlogloss:0.373206 val-mlogloss:0.518355
[671] train-mlogloss:0.373016 val-mlogloss:0.518318
[672] train-mlogloss:0.372833 val-mlogloss:0.518269
[673] train-mlogloss:0.372631 val-mlogloss:0.518276
[674] train-mlogloss:0.37246 val-mlogloss:0.518311
[675] train-mlogloss:0.372304 val-mlogloss:0.518334
[676] train-mlogloss:0.372155 val-mlogloss:0.518289
[677] train-mlogloss:0.371978 val-mlogloss:0.518272
[678] train-mlogloss:0.371817 val-mlogloss:0.518277
[679] train-mlogloss:0.371642 val-mlogloss:0.518262
[680] train-mlogloss:0.371457 val-mlogloss:0.518282
[681] train-mlogloss:0.371279 val-mlogloss:0.518296
[682] train-mlogloss:0.371077 val-mlogloss:0.518276
[683] train-mlogloss:0.370891 val-mlogloss:0.518262
[684] train-mlogloss:0.370684 val-mlogloss:0.518271
[685] train-mlogloss:0.370517 val-mlogloss:0.518232
[686] train-mlogloss:0.37036 val-mlogloss:0.518218
[687] train-mlogloss:0.370211 val-mlogloss:0.518189
[688] train-mlogloss:0.370015 val-mlogloss:0.518175
[689] train-mlogloss:0.369861 val-mlogloss:0.518146
[690] train-mlogloss:0.369658 val-mlogloss:0.518139
[691] train-mlogloss:0.369497 val-mlogloss:0.518102
[692] train-mlogloss:0.369238 val-mlogloss:0.518114
[693] train-mlogloss:0.369007 val-mlogloss:0.518125
[694] train-mlogloss:0.368817 val-mlogloss:0.518094
[695] train-mlogloss:0.368599 val-mlogloss:0.51806
[696] train-mlogloss:0.368398 val-mlogloss:0.518058
[697] train-mlogloss:0.368152 val-mlogloss:0.518043
[698] train-mlogloss:0.367989 val-mlogloss:0.518049
[699] train-mlogloss:0.367829 val-mlogloss:0.518048
[700] train-mlogloss:0.36763 val-mlogloss:0.518039
[701] train-mlogloss:0.367449 val-mlogloss:0.518005
[702] train-mlogloss:0.367217 val-mlogloss:0.517995
[703] train-mlogloss:0.367038 val-mlogloss:0.51793
[704] train-mlogloss:0.366892 val-mlogloss:0.517867
[705] train-mlogloss:0.366646 val-mlogloss:0.517857
[706] train-mlogloss:0.366457 val-mlogloss:0.517864
[707] train-mlogloss:0.366275 val-mlogloss:0.517877
[708] train-mlogloss:0.366068 val-mlogloss:0.517873
[709] train-mlogloss:0.365867 val-mlogloss:0.517843
[710] train-mlogloss:0.365713 val-mlogloss:0.517842
[711] train-mlogloss:0.365545 val-mlogloss:0.517859
[712] train-mlogloss:0.365334 val-mlogloss:0.517843
[713] train-mlogloss:0.365247 val-mlogloss:0.517829
[714] train-mlogloss:0.365119 val-mlogloss:0.517832
[715] train-mlogloss:0.364935 val-mlogloss:0.517809
[716] train-mlogloss:0.364785 val-mlogloss:0.517823
[717] train-mlogloss:0.364538 val-mlogloss:0.517778
[718] train-mlogloss:0.364332 val-mlogloss:0.51777
[719] train-mlogloss:0.364145 val-mlogloss:0.517785
[720] train-mlogloss:0.363946 val-mlogloss:0.517765
[721] train-mlogloss:0.363789 val-mlogloss:0.517737
[722] train-mlogloss:0.363648 val-mlogloss:0.517761
[723] train-mlogloss:0.363498 val-mlogloss:0.517766
[724] train-mlogloss:0.363356 val-mlogloss:0.51776
[725] train-mlogloss:0.363138 val-mlogloss:0.517736
[726] train-mlogloss:0.362912 val-mlogloss:0.517714
[727] train-mlogloss:0.362682 val-mlogloss:0.51766
[728] train-mlogloss:0.362521 val-mlogloss:0.517623
[729] train-mlogloss:0.36239 val-mlogloss:0.517638
[730] train-mlogloss:0.362191 val-mlogloss:0.517609
[731] train-mlogloss:0.361941 val-mlogloss:0.517614
[732] train-mlogloss:0.361792 val-mlogloss:0.517605
[733] train-mlogloss:0.361645 val-mlogloss:0.517602
[734] train-mlogloss:0.361486 val-mlogloss:0.517589
[735] train-mlogloss:0.361304 val-mlogloss:0.517536
[736] train-mlogloss:0.361121 val-mlogloss:0.517486
[737] train-mlogloss:0.360944 val-mlogloss:0.517457
[738] train-mlogloss:0.360729 val-mlogloss:0.51743
[739] train-mlogloss:0.360532 val-mlogloss:0.517408
[740] train-mlogloss:0.360386 val-mlogloss:0.517397
[741] train-mlogloss:0.360244 val-mlogloss:0.517401
[742] train-mlogloss:0.360055 val-mlogloss:0.517388
[743] train-mlogloss:0.359881 val-mlogloss:0.517356
[744] train-mlogloss:0.359657 val-mlogloss:0.517296
[745] train-mlogloss:0.359473 val-mlogloss:0.517263
[746] train-mlogloss:0.359229 val-mlogloss:0.517274
[747] train-mlogloss:0.358997 val-mlogloss:0.517219
[748] train-mlogloss:0.358815 val-mlogloss:0.517178
[749] train-mlogloss:0.358596 val-mlogloss:0.51717
[750] train-mlogloss:0.358417 val-mlogloss:0.517164
[751] train-mlogloss:0.358278 val-mlogloss:0.517166
[752] train-mlogloss:0.358122 val-mlogloss:0.517155
[753] train-mlogloss:0.357892 val-mlogloss:0.517107
[754] train-mlogloss:0.357713 val-mlogloss:0.517099
[755] train-mlogloss:0.357513 val-mlogloss:0.517086
[756] train-mlogloss:0.357315 val-mlogloss:0.517099
[757] train-mlogloss:0.35715 val-mlogloss:0.517132
[758] train-mlogloss:0.35704 val-mlogloss:0.517161
[759] train-mlogloss:0.356829 val-mlogloss:0.517124
[760] train-mlogloss:0.35669 val-mlogloss:0.51714
[761] train-mlogloss:0.356544 val-mlogloss:0.517113
[762] train-mlogloss:0.356404 val-mlogloss:0.517111
[763] train-mlogloss:0.356215 val-mlogloss:0.517107
[764] train-mlogloss:0.35604 val-mlogloss:0.51709
[765] train-mlogloss:0.355829 val-mlogloss:0.517056
[766] train-mlogloss:0.355679 val-mlogloss:0.517021
[767] train-mlogloss:0.355549 val-mlogloss:0.517044
[768] train-mlogloss:0.355416 val-mlogloss:0.517017
[769] train-mlogloss:0.355236 val-mlogloss:0.517032
[770] train-mlogloss:0.35507 val-mlogloss:0.517013
[771] train-mlogloss:0.354927 val-mlogloss:0.516987
[772] train-mlogloss:0.354808 val-mlogloss:0.51697
[773] train-mlogloss:0.354657 val-mlogloss:0.516946
[774] train-mlogloss:0.354452 val-mlogloss:0.516964
[775] train-mlogloss:0.354311 val-mlogloss:0.516944
[776] train-mlogloss:0.354129 val-mlogloss:0.516934
[777] train-mlogloss:0.353969 val-mlogloss:0.516935
[778] train-mlogloss:0.353765 val-mlogloss:0.516911
[779] train-mlogloss:0.353564 val-mlogloss:0.516926
[780] train-mlogloss:0.353389 val-mlogloss:0.516906
[781] train-mlogloss:0.353222 val-mlogloss:0.516887
[782] train-mlogloss:0.353026 val-mlogloss:0.516844
[783] train-mlogloss:0.352866 val-mlogloss:0.516856
[784] train-mlogloss:0.352697 val-mlogloss:0.516829
[785] train-mlogloss:0.352475 val-mlogloss:0.516787
[786] train-mlogloss:0.352309 val-mlogloss:0.516768
[787] train-mlogloss:0.352119 val-mlogloss:0.516761
[788] train-mlogloss:0.35195 val-mlogloss:0.516746
[789] train-mlogloss:0.351796 val-mlogloss:0.516754
[790] train-mlogloss:0.351584 val-mlogloss:0.516747
[791] train-mlogloss:0.351428 val-mlogloss:0.516751
[792] train-mlogloss:0.35123 val-mlogloss:0.516733
[793] train-mlogloss:0.351008 val-mlogloss:0.516708
[794] train-mlogloss:0.350863 val-mlogloss:0.5167
[795] train-mlogloss:0.350704 val-mlogloss:0.516729
[796] train-mlogloss:0.350524 val-mlogloss:0.516739
[797] train-mlogloss:0.350387 val-mlogloss:0.516728
[798] train-mlogloss:0.35019 val-mlogloss:0.516731
[799] train-mlogloss:0.349979 val-mlogloss:0.51673
[800] train-mlogloss:0.349853 val-mlogloss:0.516706
[801] train-mlogloss:0.349661 val-mlogloss:0.516701
[802] train-mlogloss:0.349481 val-mlogloss:0.51669
[803] train-mlogloss:0.349376 val-mlogloss:0.516729
[804] train-mlogloss:0.349226 val-mlogloss:0.516685
[805] train-mlogloss:0.349017 val-mlogloss:0.516664
[806] train-mlogloss:0.348847 val-mlogloss:0.516668
[807] train-mlogloss:0.348714 val-mlogloss:0.516691
[808] train-mlogloss:0.348554 val-mlogloss:0.51668
[809] train-mlogloss:0.348395 val-mlogloss:0.51668
[810] train-mlogloss:0.348282 val-mlogloss:0.516699
[811] train-mlogloss:0.348096 val-mlogloss:0.516711
[812] train-mlogloss:0.347889 val-mlogloss:0.516707
[813] train-mlogloss:0.347725 val-mlogloss:0.516685
[814] train-mlogloss:0.347604 val-mlogloss:0.516657
[815] train-mlogloss:0.347392 val-mlogloss:0.516655
[816] train-mlogloss:0.347216 val-mlogloss:0.516639
[817] train-mlogloss:0.347052 val-mlogloss:0.516614
[818] train-mlogloss:0.346879 val-mlogloss:0.516602
[819] train-mlogloss:0.346745 val-mlogloss:0.516616
[820] train-mlogloss:0.346617 val-mlogloss:0.516602
[821] train-mlogloss:0.346436 val-mlogloss:0.516587
[822] train-mlogloss:0.346244 val-mlogloss:0.516569
[823] train-mlogloss:0.34614 val-mlogloss:0.516553
[824] train-mlogloss:0.345962 val-mlogloss:0.51655
[825] train-mlogloss:0.345809 val-mlogloss:0.516522
[826] train-mlogloss:0.345626 val-mlogloss:0.516524
[827] train-mlogloss:0.345465 val-mlogloss:0.516547
[828] train-mlogloss:0.345313 val-mlogloss:0.516504
[829] train-mlogloss:0.345091 val-mlogloss:0.516472
[830] train-mlogloss:0.344963 val-mlogloss:0.516464
[831] train-mlogloss:0.344819 val-mlogloss:0.516464
[832] train-mlogloss:0.344654 val-mlogloss:0.516469
[833] train-mlogloss:0.344505 val-mlogloss:0.516484
[834] train-mlogloss:0.344396 val-mlogloss:0.516498
[835] train-mlogloss:0.34419 val-mlogloss:0.516501
[836] train-mlogloss:0.344064 val-mlogloss:0.516524
[837] train-mlogloss:0.343842 val-mlogloss:0.516541
[838] train-mlogloss:0.343609 val-mlogloss:0.516531
[839] train-mlogloss:0.343444 val-mlogloss:0.516518
[840] train-mlogloss:0.343309 val-mlogloss:0.51648
[841] train-mlogloss:0.343114 val-mlogloss:0.516478
[842] train-mlogloss:0.342972 val-mlogloss:0.516465
[843] train-mlogloss:0.342815 val-mlogloss:0.51646
[844] train-mlogloss:0.342684 val-mlogloss:0.516442
[845] train-mlogloss:0.342519 val-mlogloss:0.516437
[846] train-mlogloss:0.34236 val-mlogloss:0.516432
[847] train-mlogloss:0.342198 val-mlogloss:0.516407
[848] train-mlogloss:0.342043 val-mlogloss:0.516377
[849] train-mlogloss:0.341849 val-mlogloss:0.516355
[850] train-mlogloss:0.341685 val-mlogloss:0.516313
[851] train-mlogloss:0.341544 val-mlogloss:0.516314
[852] train-mlogloss:0.341411 val-mlogloss:0.516301
[853] train-mlogloss:0.34123 val-mlogloss:0.516277
[854] train-mlogloss:0.34109 val-mlogloss:0.516255
[855] train-mlogloss:0.340936 val-mlogloss:0.516271
[856] train-mlogloss:0.340782 val-mlogloss:0.516263
[857] train-mlogloss:0.34062 val-mlogloss:0.51625
[858] train-mlogloss:0.340443 val-mlogloss:0.516268
[859] train-mlogloss:0.340337 val-mlogloss:0.516212
[860] train-mlogloss:0.34017 val-mlogloss:0.516205
[861] train-mlogloss:0.340041 val-mlogloss:0.516201
[862] train-mlogloss:0.339908 val-mlogloss:0.516198
[863] train-mlogloss:0.339725 val-mlogloss:0.516169
[864] train-mlogloss:0.339561 val-mlogloss:0.516156
[865] train-mlogloss:0.339401 val-mlogloss:0.516202
[866] train-mlogloss:0.339242 val-mlogloss:0.516194
[867] train-mlogloss:0.339122 val-mlogloss:0.516188
[868] train-mlogloss:0.338956 val-mlogloss:0.516202
[869] train-mlogloss:0.338764 val-mlogloss:0.516181
[870] train-mlogloss:0.338646 val-mlogloss:0.516149
[871] train-mlogloss:0.33847 val-mlogloss:0.516144
[872] train-mlogloss:0.338337 val-mlogloss:0.516152
[873] train-mlogloss:0.338156 val-mlogloss:0.516149
[874] train-mlogloss:0.33798 val-mlogloss:0.516181
[875] train-mlogloss:0.337821 val-mlogloss:0.516165
[876] train-mlogloss:0.337714 val-mlogloss:0.516149
[877] train-mlogloss:0.337489 val-mlogloss:0.516124
[878] train-mlogloss:0.337341 val-mlogloss:0.516108
[879] train-mlogloss:0.337147 val-mlogloss:0.516059
[880] train-mlogloss:0.337017 val-mlogloss:0.516059
[881] train-mlogloss:0.336847 val-mlogloss:0.516056
[882] train-mlogloss:0.33668 val-mlogloss:0.516076
[883] train-mlogloss:0.336491 val-mlogloss:0.516078
[884] train-mlogloss:0.336316 val-mlogloss:0.516087
[885] train-mlogloss:0.336143 val-mlogloss:0.516118
[886] train-mlogloss:0.335963 val-mlogloss:0.516126
[887] train-mlogloss:0.3358 val-mlogloss:0.516098
[888] train-mlogloss:0.335605 val-mlogloss:0.51607
[889] train-mlogloss:0.335437 val-mlogloss:0.516047
[890] train-mlogloss:0.335283 val-mlogloss:0.516047
[891] train-mlogloss:0.335137 val-mlogloss:0.516056
[892] train-mlogloss:0.334945 val-mlogloss:0.516072
[893] train-mlogloss:0.334805 val-mlogloss:0.516069
[894] train-mlogloss:0.334695 val-mlog
|