IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 数据分析的N种特征方法实例 -> 正文阅读

[人工智能]数据分析的N种特征方法实例

1 数据输入

import pandas as pd
df = pd.DataFrame({
    'student_id': [1,2,3,4,5,6,7],
    'country': ['China', 'USA', 'UK', 'Japan', 'Korea', 'China', 'USA'],
    'education': ['Master', 'Bachelor', 'Bachelor', 'Master', 'PHD', 'PHD', 'Bachelor'],
    'target': [1, 0, 1, 0, 1, 0, 1]
})
df.head(10)
student_idcountryeducationtarget
01ChinaMaster1
12USABachelor0
23UKBachelor1
34JapanMaster0
45KoreaPHD1
56ChinaPHD0
67USABachelor1

2 特征编码

2.1 One Hot Encoding 独热编码

pd.get_dummies(df, columns=['education'])
student_idcountrytargeteducation_Bacheloreducation_Mastereducation_PHD
01China1010
12USA0100
23UK1100
34Japan0010
45Korea1001
56China0001
67USA1100
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
ohe.fit_transform(df[['country']]).toarray()
array([[1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       [0., 0., 0., 1., 0.],
       [0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.]])

2.2 Label Encoding 标签编码

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['country_LabelEncoder'] = le.fit_transform(df['country'])
df.head(10)
student_idcountryeducationtargetcountry_LabelEncoder
01ChinaMaster10
12USABachelor04
23UKBachelor13
34JapanMaster01
45KoreaPHD12
56ChinaPHD00
67USABachelor14
df['country_LabelEncoder'] = pd.factorize(df['country'])[0]
df.head(10)
student_idcountryeducationtargetcountry_LabelEncoder
01ChinaMaster10
12USABachelor01
23UKBachelor12
34JapanMaster03
45KoreaPHD14
56ChinaPHD00
67USABachelor11
pd.factorize(df['country'])
(array([0, 1, 2, 3, 4, 0, 1]),
 Index(['China', 'USA', 'UK', 'Japan', 'Korea'], dtype='object'))

2.3 Ordinal Encoding 顺序编码

df['education'] = df['education'].map(
                    {'Bachelor': 1, 
                    'Master': 2, 
                    'PHD': 3})
df.head(10)
student_idcountryeducationtargetcountry_LabelEncoder
01China210
12USA101
23UK112
34Japan203
45Korea314
56China300
67USA111

2.4 Binary Encoding 二进制编码

import category_encoders as ce
encoder = ce.BinaryEncoder(cols= ['country'])

pd.concat([df, encoder.fit_transform(df['country']).iloc[:, 1:]], axis=1)
student_idcountryeducationtargetcountry_1country_2country_3
01ChinaMaster1001
12USABachelor0010
23UKBachelor1011
34JapanMaster0100
45KoreaPHD1101
56ChinaPHD0001
67USABachelor1010

2.5 Frequency Encoding、Count Encoding

df['country_count'] = df['country'].map(df['country'].value_counts()) / len(df)
df.head(10)
student_idcountryeducationtargetcountry_count
01ChinaMaster10.285714
12USABachelor00.285714
23UKBachelor10.142857
34JapanMaster00.142857
45KoreaPHD10.142857
56ChinaPHD00.285714
67USABachelor10.285714
df['country_count'] = df['country'].map(df['country'].value_counts())
df.head(10)
student_idcountryeducationtargetcountry_count
01ChinaMaster12
12USABachelor02
23UKBachelor11
34JapanMaster01
45KoreaPHD11
56ChinaPHD02
67USABachelor12

2.6 Mean/Target Encoding

df.groupby(['country'])['target'].mean()
country
China    0.5
Japan    0.0
Korea    1.0
UK       1.0
USA      0.5
Name: target, dtype: float64
df['country_target'] = df['country'].map(df.groupby(['country'])['target'].mean())
df.head(10)
student_idcountryeducationtargetcountry_target
01ChinaMaster10.5
12USABachelor00.5
23UKBachelor11.0
34JapanMaster00.0
45KoreaPHD11.0
56ChinaPHD00.5
67USABachelor10.5
df = pd.DataFrame({
    'student_id': [1,2,3,4,5,6,7],
    'country': ['China', 'USA', 'UK', 'Japan', 'Korea', 'China', 'USA'],
    'education': ['Master', 'Bachelor', 'Bachelor', 'Master', 'PHD', 'PHD', 'Bachelor'],
    'age': [34.5, 28.9, 19.5, 23.6, 19.8, 29.8, 31.7],
    'target': [1, 0, 1, 0, 1, 0, 1]
})
df.head(10)
student_idcountryeducationagetarget
01ChinaMaster34.51
12USABachelor28.90
23UKBachelor19.51
34JapanMaster23.60
45KoreaPHD19.81
56ChinaPHD29.80
67USABachelor31.71
df['age_round1'] = df['age'].round()
df['age_round2'] = (df['age'] / 10).astype(int)
df.head(10)
student_idcountryeducationagetargetage_round1age_round2
01ChinaMaster34.5134.03
12USABachelor28.9029.02
23UKBachelor19.5120.01
34JapanMaster23.6024.02
45KoreaPHD19.8120.01
56ChinaPHD29.8030.02
67USABachelor31.7132.03
df['age_<20'] = (df['age'] <= 20).astype(int)
df['age_20-25'] = ((df['age'] > 20) & (df['age'] <=25)).astype(int)
df['age_20-25'] = ((df['age'] > 25) & (df['age'] <= 30)).astype(int)
df['age_>30'] = (df['age'] > 30).astype(int)
df.head(10)
student_idcountryeducationagetargetage_<20age_20-25age_>30
01ChinaMaster34.51001
12USABachelor28.90010
23UKBachelor19.51100
34JapanMaster23.60000
45KoreaPHD19.81100
56ChinaPHD29.80010
67USABachelor31.71001
df
student_idcountryeducationagetargetage_<20age_20-25age_>30
01ChinaMaster34.51001
12USABachelor28.90010
23UKBachelor19.51100
34JapanMaster23.60000
45KoreaPHD19.81100
56ChinaPHD29.80010
67USABachelor31.71001

3 绘图

用具体的取值衡量特征的重要性

%pylab inline
import numpy as np
from sklearn.ensemble import RandomForestRegressor

from sklearn.datasets import load_boston
data = load_boston()

rf = RandomForestRegressor()
rf.fit(data.data, data.target);
print(rf.feature_importances_)

plt.figure(figsize=(12, 6))
plt.bar(range(1, 14), rf.feature_importances_)
_ = plt.xticks(range(1, 14), data.feature_names)
Populating the interactive namespace from numpy and matplotlib
[0.03932896 0.00111874 0.00558259 0.00072371 0.0233215  0.43068769
 0.01233092 0.06505465 0.00364571 0.01419684 0.01678173 0.0108236
 0.37640336]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-veVxLvjH-1638884680963)(output_25_1.png)]

import numpy as np
from sklearn.ensemble import RandomForestRegressor

from lightgbm import LGBMRegressor
data = load_boston()

clf = LGBMRegressor()
clf.fit(data.data, data.target)

plt.figure(figsize=(12, 6))
plt.bar(range(1, 14), clf.feature_importances_)
_ = plt.xticks(range(1, 14), data.feature_names)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-unHbVqED-1638884680965)(output_26_0.png)]

import numpy as np
from sklearn.ensemble import RandomForestRegressor

from xgboost import XGBRegressor
data = load_boston()

clf = XGBRegressor()
clf.fit(data.data, data.target)

plt.figure(figsize=(12, 6))
plt.bar(range(1, 14), clf.feature_importances_)
_ = plt.xticks(range(1, 14), data.feature_names)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oTPig39H-1638884680966)(output_27_0.png)]

4 Two-Simg实例代码

房价预测,在这整个比赛中的工作。

import os
import sys
import operator
import numpy as np
import pandas as pd
from scipy import sparse
import random


import xgboost as xgb

# 支持sklearn接口
from xgboost import XGBClassifier, XGBRegressor
# 分类器 以 Classifier 结尾
# 回归器 以 Regressor 结尾

from sklearn import model_selection, preprocessing, ensemble
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from collections import defaultdict, Counter
def runXGB(train_X, train_y, val_X, val_y=None, test_X=None, 
           feature_names=None, seed_val=0, num_rounds=1000):
    param = {}
    
    
    param['objective'] = 'multi:softprob'
    
    param['eta'] = 0.03
    param['max_depth'] = 6
    param['silent'] = 0
    param['num_class'] = 3
    param['eval_metric'] = "mlogloss"
    param['min_child_weight'] = 1
    param['subsample'] = 0.7
    param['colsample_bytree'] = 0.7
    param['seed'] = seed_val
    param['nthread'] = 12 # cpu核数
    num_rounds = num_rounds

    plst = list(param.items())
    xgtrain = xgb.DMatrix(train_X, label=train_y)

    if val_y is not None:
        xgval = xgb.DMatrix(val_X, label=val_y)
        watchlist = [ (xgtrain,'train'), (xgval, 'val') ]
        # 原生xgboost训练
        model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=50)
    else:
        model = xgb.train(plst, xgtrain, num_rounds)
    xgtest = xgb.DMatrix(test_X)
    
    pred_test_y = model.predict(xgtest)
    return pred_test_y, model

这里需要下载训练和测试的文件,看这里

train_df = pd.read_json('../input/train.json.zip', compression='zip')
test_df = pd.read_json('../input/test.json.zip', compression='zip')

features_to_use  = ["bathrooms", "bedrooms", "latitude", "longitude", "price"]

mean_price = int(train_df['price'].mean())
test_df.loc[test_df['price']<200,'price'] = mean_price
train_df.loc[train_df['price']<200,'price'] = mean_price
train_test = pd.concat([train_df, test_df], 0,sort=False)

features = train_test[["features"]].apply(
    lambda _: [list(map(str.strip, map(str.lower, x))) for x in _])


n = 5

feature_counts = Counter()
for feature in features.features:
    feature_counts.update(feature)
feature = sorted([k for (k,v) in feature_counts.items() if v > n])
feature[:10]


def clean(s):
    x = s.replace("-", "")
    x = x.replace(" ", "")
    x = x.replace("24/7", "24")
    x = x.replace("24hr", "24")
    x = x.replace("24-hour", "24")
    x = x.replace("24hour", "24")
    x = x.replace("24 hour", "24")
    x = x.replace("common", "cm")
    x = x.replace("concierge", "doorman")
    x = x.replace("bicycle", "bike")
    x = x.replace("pets:cats", "cats")
    x = x.replace("allpetsok", "pets")
    x = x.replace("dogs", "pets")
    x = x.replace("private", "pv")
    x = x.replace("deco", "dc")
    x = x.replace("decorative", "dc")
    x = x.replace("onsite", "os")
    x = x.replace("outdoor", "od")
    x = x.replace("ss appliances", "stainless")
    return x

def feature_hash(x):
    cleaned = clean(x, uniq)
    key = cleaned[:4].strip()
    return key


key2original = defaultdict(list)
k = 4
for f in feature:
    cleaned = clean(f)
    key = cleaned[:k].strip()

    key2original[key].append(f)

    
def to_tuples():
    for f in feature:
        key = clean(f)[:k].strip()
        yield (f, key2original[key][0])
        
deduped = list(to_tuples())
df = pd.DataFrame(deduped, columns=["original_feature", "unique_feature"])

dict_rep_features = pd.Series(df['unique_feature'].values, df['original_feature'].values)
test_df['features'] = test_df['features'].apply(lambda x: list(map(str.strip, map(str.lower, x))))\
                    .apply(lambda x: [dict_rep_features[i] for i in x if i in dict_rep_features.index])\
                    .apply(lambda x: list(set(x)))

train_df['features'] = train_df['features'].apply(lambda x: list(map(str.strip, map(str.lower, x))))\
                    .apply(lambda x: [dict_rep_features[i] for i in x if i in dict_rep_features.index])\
                    .apply(lambda x: list(set(x)))

import math
def cart2rho(x, y):
    rho = np.sqrt(x**2 + y**2)
    return rho


def cart2phi(x, y):
    phi = np.arctan2(y, x)
    return phi


def rotation_x(row, alpha):
    x = row['latitude']
    y = row['longitude']
    return x*math.cos(alpha) + y*math.sin(alpha)


def rotation_y(row, alpha):
    x = row['latitude']
    y = row['longitude']
    return y*math.cos(alpha) - x*math.sin(alpha)


def add_rotation(degrees, df):
    namex = "rot" + str(degrees) + "_X"
    namey = "rot" + str(degrees) + "_Y"

    df['num_' + namex] = df.apply(lambda row: rotation_x(row, math.pi/(180/degrees)), axis=1)
    df['num_' + namey] = df.apply(lambda row: rotation_y(row, math.pi/(180/degrees)), axis=1)

    return df

def operate_on_coordinates(tr_df, te_df):
    for df in [tr_df, te_df]:
        #polar coordinates system
        df["num_rho"] = df.apply(lambda x: cart2rho(x["latitude"] - 40.78222222, x["longitude"]+73.96527777), axis=1)
        df["num_phi"] = df.apply(lambda x: cart2phi(x["latitude"] - 40.78222222, x["longitude"]+73.96527777), axis=1)
        #rotations
        for angle in [15,30,45,60]:
            df = add_rotation(angle, df)

    return tr_df, te_df

train_df, test_df = operate_on_coordinates(train_df, test_df)

features_to_use.extend(['num_rho', 'num_phi', 'num_rot15_X', 'num_rot15_Y', 'num_rot30_X',
       'num_rot30_Y', 'num_rot45_X', 'num_rot45_Y', 'num_rot60_X',
       'num_rot60_Y'])
import re

def cap_share(x):
    return sum(1 for c in x if c.isupper())/float(len(x)+1)

for df in [train_df, test_df]:
    # do you think that users might feel annoyed BY A DESCRIPTION THAT IS SHOUTING AT THEM?
    df['num_cap_share'] = df['description'].apply(cap_share)
    
    # how long in lines the desc is?
    df['num_nr_of_lines'] = df['description'].apply(lambda x: x.count('<br /><br />'))
   
    # is the description redacted by the website?        
    df['num_redacted'] = 0
    df['num_redacted'].loc[df['description'].str.contains('website_redacted')] = 1

    
    # can we contact someone via e-mail to ask for the details?
    df['num_email'] = 0
    df['num_email'].loc[df['description'].str.contains('@')] = 1
    
    #and... can we call them?
    
    reg = re.compile(".*?(\(?\d{3}\D{0,3}\d{3}\D{0,3}\d{4}).*?", re.S)
    def try_and_find_nr(description):
        if reg.match(description) is None:
            return 0
        return 1

    df['num_phone_nr'] = df['description'].apply(try_and_find_nr)

    


features_to_use.extend(['num_cap_share', 'num_nr_of_lines', 'num_redacted',
       'num_email', 'num_phone_nr'])
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: DeprecationWarning: Calling np.sum(generator) is deprecated, and in the future will give a different result. Use np.sum(np.fromiter(generator)) or the python sum builtin instead.
  after removing the cwd from sys.path.
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
  from ipykernel import kernelapp as app
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:190: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._setitem_with_indexer(indexer, value)
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:20: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
# count of photos #
train_df["num_photos"] = train_df["photos"].apply(len)  #photos原始是list类型
test_df["num_photos"] = test_df["photos"].apply(len)

# count of "features" #
train_df["num_features"] = train_df["features"].apply(len)
test_df["num_features"] = test_df["features"].apply(len)

# count of words present in description column #
train_df["num_description_words"] = train_df["description"].apply(lambda x: len(x.split(" ")))  #使用空白符进行分隔,统计有多少个字符类型
test_df["num_description_words"] = test_df["description"].apply(lambda x: len(x.split(" ")))

# convert the created column to datetime object so as to extract more features 
train_df["created"] = pd.to_datetime(train_df["created"])
test_df["created"] = pd.to_datetime(test_df["created"])

# Let us extract some features like year, month, day, hour from date columns #
train_df["created_year"] = train_df["created"].dt.year
test_df["created_year"] = test_df["created"].dt.year
train_df["created_month"] = train_df["created"].dt.month
test_df["created_month"] = test_df["created"].dt.month
train_df["created_day"] = train_df["created"].dt.day
test_df["created_day"] = test_df["created"].dt.day
train_df["created_hour"] = train_df["created"].dt.hour
test_df["created_hour"] = test_df["created"].dt.hour

# adding all these new features to use list #
features_to_use.extend(["num_photos", "num_features", "num_description_words","created_year", "created_month", "created_day", "listing_id", "created_hour"])

# 类型:数值 类别
train_df["price_t"] =train_df["price"]/train_df["bedrooms"]
test_df["price_t"] = test_df["price"]/test_df["bedrooms"] 

train_df["price_t"] =train_df["price"]/train_df["bathrooms"]
test_df["price_t"] = test_df["price"]/test_df["bathrooms"] 

train_df["room_sum"] = train_df["bedrooms"]+train_df["bathrooms"] 
test_df["room_sum"] = test_df["bedrooms"]+test_df["bathrooms"]   #总共有多少房间

train_df["price_t"] =train_df["price"]/train_df["room_sum"]
test_df["price_t"] = test_df["price"]/test_df["room_sum"]   #平摊到每个房间的价格

features_to_use.extend(["price_t", "room_sum", "num_description_words"])
start_values = [0,0,0]

index=list(range(train_df.shape[0]))
random.shuffle(index)
a=[np.nan]*len(train_df)
b=[np.nan]*len(train_df)
c=[np.nan]*len(train_df)


# 每次赋值,对未知的样本进行赋值
# manager_id 中介:id 高基数类别特征,target encoding

# 训练集部分进行统计,对验证部分进行编码
# 随机把数据集划分5份,4份计算target encoding,对剩余一份进行赋值

# 常规的模型:数值输入,sklean,神经网络
# xgboost、lightgbm、catboost:可以输入类别

# 分组统计:不同managerid分组下面的标签平均
# 不同managerid分组下面的价格分布

for i in range(5):
    building_level={}
    for j in train_df['manager_id'].values:
        building_level[j]= start_values.copy()
    test_index=index[int((i*train_df.shape[0])/5):int(((i+1)*train_df.shape[0])/5)]
    train_index=list(set(index).difference(test_index))
    for j in train_index:
        temp=train_df.iloc[j]
        if temp['interest_level']=='low':
            building_level[temp['manager_id']][0]+=1
        if temp['interest_level']=='medium':
            building_level[temp['manager_id']][1]+=1
        if temp['interest_level']=='high':
            building_level[temp['manager_id']][2]+=1
    for j in test_index:
        temp=train_df.iloc[j]
        if sum(building_level[temp['manager_id']])!=0:
            a[j]=building_level[temp['manager_id']][0]*1.0/sum(building_level[temp['manager_id']])
            b[j]=building_level[temp['manager_id']][1]*1.0/sum(building_level[temp['manager_id']])
            c[j]=building_level[temp['manager_id']][2]*1.0/sum(building_level[temp['manager_id']])
train_df['manager_level_low']=a
train_df['manager_level_medium']=b
train_df['manager_level_high']=c


a=[]
b=[]
c=[]
building_level={}
for j in train_df['manager_id'].values:
    building_level[j]= start_values.copy()
for j in range(train_df.shape[0]):
    temp=train_df.iloc[j]
    if temp['interest_level']=='low':
        building_level[temp['manager_id']][0]+=1
    if temp['interest_level']=='medium':
        building_level[temp['manager_id']][1]+=1
    if temp['interest_level']=='high':
        building_level[temp['manager_id']][2]+=1

for i in test_df['manager_id'].values:
    if i not in building_level.keys():
        a.append(np.nan)
        b.append(np.nan)
        c.append(np.nan)
    else:
        a.append(building_level[i][0]*1.0/sum(building_level[i]))
        b.append(building_level[i][1]*1.0/sum(building_level[i]))
        c.append(building_level[i][2]*1.0/sum(building_level[i]))
test_df['manager_level_low']=a
test_df['manager_level_medium']=b
test_df['manager_level_high']=c

features_to_use.append('manager_level_low') 
features_to_use.append('manager_level_medium') 
features_to_use.append('manager_level_high')
train_df["listing_id1"] = train_df["listing_id"] - 68119576.0
test_df["listing_id1"] =  test_df["listing_id"] - 68119576.0

train_df["num_price_by_furniture"] = (train_df["price"])/ (train_df["bathrooms"] + train_df["bedrooms"] + 1.0)
test_df["num_price_by_furniture"] =  (test_df["price"])/ (test_df["bathrooms"] + test_df["bedrooms"] +  1.0)

train_df["price_latitue"] = (train_df["price"])/ (train_df["latitude"]+1.0)
test_df["price_latitue"] =  (test_df["price"])/ (test_df["latitude"]+1.0)

train_df["price_longtitude"] = (train_df["price"])/ (train_df["longitude"]-1.0)
test_df["price_longtitude"] =  (test_df["price"])/ (test_df["longitude"]-1.0)  

train_df["num_furniture"] =  train_df["bathrooms"] + train_df["bedrooms"] 
test_df["num_furniture"] =   test_df["bathrooms"] + test_df["bedrooms"] 

train_df["total_days"] =   (train_df["created_month"] -4.0)*30 + train_df["created_day"] +  train_df["created_hour"] /25.0
test_df["total_days"] =(test_df["created_month"] -4.0)*30 + test_df["created_day"] +  test_df["created_hour"] /25.0        
train_df["diff_rank"]= train_df["total_days"]/train_df["listing_id1"]
test_df["diff_rank"]= test_df["total_days"]/test_df["listing_id1"]


features_to_use.extend([ "total_days","diff_rank",
"num_price_by_furniture","price_latitue","price_longtitude",'num_furniture'])
categorical = ["display_address", "manager_id", "building_id", "street_address"]
for f in categorical:
        if train_df[f].dtype=='object':
            #print(f)
            lbl = preprocessing.LabelEncoder()
            lbl.fit(list(train_df[f].values) + list(test_df[f].values))
            train_df[f] = lbl.transform(list(train_df[f].values))
            test_df[f] = lbl.transform(list(test_df[f].values))
            features_to_use.append(f)
train_df["price0"] = (train_df["price"]%10==0).astype(int)
test_df["price0"] = (test_df["price"]%10==0).astype(int)

train_df["manager_count"] = train_df["manager_id"].replace(train_df["manager_id"].value_counts())
test_df["manager_count"] = test_df["manager_id"].replace(train_df["manager_id"].value_counts())

features_to_use.extend(["price0",'manager_count'])

train_df['features'] = train_df["features"].apply(lambda x: " ".join(["_".join(i.split(" ")) for i in x]))
test_df['features'] = test_df["features"].apply(lambda x: " ".join(["_".join(i.split(" ")) for i in x]))
print(train_df["features"].head())
tfidf = CountVectorizer(stop_words='english', max_features=70)
te_sparse = tfidf.fit_transform(test_df["features"])
tr_sparse = tfidf.transform(train_df["features"])

tfidfdesc=TfidfVectorizer(min_df=20, max_features=50, strip_accents='unicode',lowercase =True,
                    analyzer='word', token_pattern=r'\w{16,}', ngram_range=(1, 2), use_idf=False,smooth_idf=False, 
                    sublinear_tf=True, stop_words = 'english')  

train_df['description'] =  train_df['description'].apply(lambda x: str(x).encode('utf-8') if len(x)>2 else "nulldesc") 
test_df['description'] =   test_df['description'].apply(lambda x: str(x).encode('utf-8') if len(x)>2 else "nulldesc") 
te_sparsed = tfidfdesc. fit_transform (test_df["description"])  
tr_sparsed = tfidfdesc.transform(train_df["description"])

train_X = sparse.hstack([train_df[features_to_use], tr_sparse,tr_sparsed]).tocsr()#
test_X = sparse.hstack([test_df[features_to_use], te_sparse,te_sparsed]).tocsr()#

target_num_map = {'high':0, 'medium':1, 'low':2}
train_y = np.array(train_df['interest_level'].apply(lambda x: target_num_map[x]))

print(train_X.shape, test_X.shape)
10                                                         
10000     elevator concierge fitness_center cats_allowed...
100004                         dish_washer hardwood laundry
100007                                      hardwood no_fee
100013                                              pre_war
Name: features, dtype: object
(49352, 166) (74659, 166)
preds, model = runXGB(train_X, train_y, val_X=None, val_y=None, test_X=test_X, num_rounds=100)
out_df = pd.DataFrame(preds)
out_df.columns = ["high", "medium", "low"]
out_df["listing_id"] = test_df.listing_id.values
out_df.to_csv("xgb_baseline3.csv", index=False)
cv_scores = []
test_pred = None
kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=2016)
for dev_index, val_index in kf.split(range(train_X.shape[0])):
        dev_X, val_X = train_X[dev_index,:], train_X[val_index,:]
        dev_y, val_y = train_y[dev_index], train_y[val_index]
        preds, model = runXGB(dev_X, dev_y, val_X, val_y, test_X, num_rounds=2000)
        
        if test_pred is None:
            test_pred = preds
        else:
            test_pred += preds
test_pred /= 5
out_df = pd.DataFrame(test_pred)
out_df.columns = ["high", "medium", "low"]
out_df["listing_id"] = test_df.listing_id.values
out_df.to_csv("xgb_baseline3.csv", index=False)
[0]	train-mlogloss:1.07775	val-mlogloss:1.07827
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.

Will train until val-mlogloss hasn't improved in 50 rounds.
[1]	train-mlogloss:1.05804	val-mlogloss:1.05915
[2]	train-mlogloss:1.0391	val-mlogloss:1.04076
[3]	train-mlogloss:1.02106	val-mlogloss:1.02331
[4]	train-mlogloss:1.00379	val-mlogloss:1.00659
[5]	train-mlogloss:0.987297	val-mlogloss:0.990692
[6]	train-mlogloss:0.971684	val-mlogloss:0.975621
[7]	train-mlogloss:0.956643	val-mlogloss:0.961212
[8]	train-mlogloss:0.942392	val-mlogloss:0.947541
[9]	train-mlogloss:0.928634	val-mlogloss:0.934332
[10]	train-mlogloss:0.915499	val-mlogloss:0.921662
[11]	train-mlogloss:0.902885	val-mlogloss:0.909531
[12]	train-mlogloss:0.890587	val-mlogloss:0.897704
[13]	train-mlogloss:0.879018	val-mlogloss:0.886706
[14]	train-mlogloss:0.867827	val-mlogloss:0.876054
[15]	train-mlogloss:0.857247	val-mlogloss:0.865963
[16]	train-mlogloss:0.847002	val-mlogloss:0.856158
[17]	train-mlogloss:0.837087	val-mlogloss:0.846743
[18]	train-mlogloss:0.827615	val-mlogloss:0.837644
[19]	train-mlogloss:0.818583	val-mlogloss:0.82898
[20]	train-mlogloss:0.809766	val-mlogloss:0.820555
[21]	train-mlogloss:0.801199	val-mlogloss:0.812395
[22]	train-mlogloss:0.79294	val-mlogloss:0.804595
[23]	train-mlogloss:0.785002	val-mlogloss:0.797013
[24]	train-mlogloss:0.777443	val-mlogloss:0.789759
[25]	train-mlogloss:0.770085	val-mlogloss:0.782812
[26]	train-mlogloss:0.762869	val-mlogloss:0.776079
[27]	train-mlogloss:0.756035	val-mlogloss:0.769586
[28]	train-mlogloss:0.749341	val-mlogloss:0.763342
[29]	train-mlogloss:0.742882	val-mlogloss:0.757373
[30]	train-mlogloss:0.736703	val-mlogloss:0.751577
[31]	train-mlogloss:0.730713	val-mlogloss:0.74597
[32]	train-mlogloss:0.724874	val-mlogloss:0.740554
[33]	train-mlogloss:0.719264	val-mlogloss:0.735261
[34]	train-mlogloss:0.713798	val-mlogloss:0.730179
[35]	train-mlogloss:0.708494	val-mlogloss:0.72532
[36]	train-mlogloss:0.703366	val-mlogloss:0.720577
[37]	train-mlogloss:0.698472	val-mlogloss:0.716033
[38]	train-mlogloss:0.693772	val-mlogloss:0.711691
[39]	train-mlogloss:0.689239	val-mlogloss:0.707555
[40]	train-mlogloss:0.684838	val-mlogloss:0.703506
[41]	train-mlogloss:0.680593	val-mlogloss:0.699603
[42]	train-mlogloss:0.676334	val-mlogloss:0.695704
[43]	train-mlogloss:0.672309	val-mlogloss:0.692011
[44]	train-mlogloss:0.668327	val-mlogloss:0.688428
[45]	train-mlogloss:0.664522	val-mlogloss:0.684887
[46]	train-mlogloss:0.660933	val-mlogloss:0.681643
[47]	train-mlogloss:0.657279	val-mlogloss:0.678362
[48]	train-mlogloss:0.653796	val-mlogloss:0.675239
[49]	train-mlogloss:0.650425	val-mlogloss:0.672188
[50]	train-mlogloss:0.647112	val-mlogloss:0.669102
[51]	train-mlogloss:0.643936	val-mlogloss:0.666283
[52]	train-mlogloss:0.640879	val-mlogloss:0.663544
[53]	train-mlogloss:0.637921	val-mlogloss:0.660922
[54]	train-mlogloss:0.634942	val-mlogloss:0.658315
[55]	train-mlogloss:0.632088	val-mlogloss:0.655759
[56]	train-mlogloss:0.629209	val-mlogloss:0.653304
[57]	train-mlogloss:0.626533	val-mlogloss:0.650923
[58]	train-mlogloss:0.623935	val-mlogloss:0.648687
[59]	train-mlogloss:0.621426	val-mlogloss:0.646462
[60]	train-mlogloss:0.618903	val-mlogloss:0.644235
[61]	train-mlogloss:0.616492	val-mlogloss:0.642063
[62]	train-mlogloss:0.61408	val-mlogloss:0.639956
[63]	train-mlogloss:0.611771	val-mlogloss:0.637903
[64]	train-mlogloss:0.60947	val-mlogloss:0.635978
[65]	train-mlogloss:0.607336	val-mlogloss:0.63416
[66]	train-mlogloss:0.605187	val-mlogloss:0.632312
[67]	train-mlogloss:0.603116	val-mlogloss:0.630568
[68]	train-mlogloss:0.60112	val-mlogloss:0.628791
[69]	train-mlogloss:0.599165	val-mlogloss:0.627139
[70]	train-mlogloss:0.597214	val-mlogloss:0.62547
[71]	train-mlogloss:0.595304	val-mlogloss:0.623908
[72]	train-mlogloss:0.593517	val-mlogloss:0.622375
[73]	train-mlogloss:0.591808	val-mlogloss:0.620976
[74]	train-mlogloss:0.590092	val-mlogloss:0.61953
[75]	train-mlogloss:0.588488	val-mlogloss:0.618189
[76]	train-mlogloss:0.586666	val-mlogloss:0.616749
[77]	train-mlogloss:0.584939	val-mlogloss:0.615338
[78]	train-mlogloss:0.58323	val-mlogloss:0.613948
[79]	train-mlogloss:0.581509	val-mlogloss:0.612552
[80]	train-mlogloss:0.579989	val-mlogloss:0.611326
[81]	train-mlogloss:0.578431	val-mlogloss:0.610125
[82]	train-mlogloss:0.576922	val-mlogloss:0.60898
[83]	train-mlogloss:0.575312	val-mlogloss:0.607687
[84]	train-mlogloss:0.573863	val-mlogloss:0.606527
[85]	train-mlogloss:0.572426	val-mlogloss:0.605464
[86]	train-mlogloss:0.571034	val-mlogloss:0.604398
[87]	train-mlogloss:0.569715	val-mlogloss:0.603359
[88]	train-mlogloss:0.568427	val-mlogloss:0.602321
[89]	train-mlogloss:0.567089	val-mlogloss:0.601322
[90]	train-mlogloss:0.565838	val-mlogloss:0.600377
[91]	train-mlogloss:0.564603	val-mlogloss:0.599448
[92]	train-mlogloss:0.563468	val-mlogloss:0.598632
[93]	train-mlogloss:0.562321	val-mlogloss:0.597795
[94]	train-mlogloss:0.561166	val-mlogloss:0.596895
[95]	train-mlogloss:0.55994	val-mlogloss:0.59598
[96]	train-mlogloss:0.558748	val-mlogloss:0.595017
[97]	train-mlogloss:0.557595	val-mlogloss:0.594185
[98]	train-mlogloss:0.556575	val-mlogloss:0.593453
[99]	train-mlogloss:0.555548	val-mlogloss:0.592668
[100]	train-mlogloss:0.554452	val-mlogloss:0.591822
[101]	train-mlogloss:0.553388	val-mlogloss:0.591059
[102]	train-mlogloss:0.552379	val-mlogloss:0.590298
[103]	train-mlogloss:0.551296	val-mlogloss:0.589535
[104]	train-mlogloss:0.550356	val-mlogloss:0.588745
[105]	train-mlogloss:0.549275	val-mlogloss:0.587961
[106]	train-mlogloss:0.548295	val-mlogloss:0.587239
[107]	train-mlogloss:0.547351	val-mlogloss:0.586562
[108]	train-mlogloss:0.546472	val-mlogloss:0.585977
[109]	train-mlogloss:0.545532	val-mlogloss:0.585268
[110]	train-mlogloss:0.544619	val-mlogloss:0.584629
[111]	train-mlogloss:0.543789	val-mlogloss:0.58401
[112]	train-mlogloss:0.542922	val-mlogloss:0.583409
[113]	train-mlogloss:0.542089	val-mlogloss:0.582749
[114]	train-mlogloss:0.541285	val-mlogloss:0.582233
[115]	train-mlogloss:0.540366	val-mlogloss:0.58157
[116]	train-mlogloss:0.539487	val-mlogloss:0.581026
[117]	train-mlogloss:0.538648	val-mlogloss:0.580401
[118]	train-mlogloss:0.537875	val-mlogloss:0.579826
[119]	train-mlogloss:0.537077	val-mlogloss:0.579299
[120]	train-mlogloss:0.536234	val-mlogloss:0.578751
[121]	train-mlogloss:0.535424	val-mlogloss:0.578289
[122]	train-mlogloss:0.534755	val-mlogloss:0.577885
[123]	train-mlogloss:0.533977	val-mlogloss:0.577328
[124]	train-mlogloss:0.533203	val-mlogloss:0.57689
[125]	train-mlogloss:0.532455	val-mlogloss:0.576445
[126]	train-mlogloss:0.531631	val-mlogloss:0.575928
[127]	train-mlogloss:0.530873	val-mlogloss:0.575459
[128]	train-mlogloss:0.530228	val-mlogloss:0.575039
[129]	train-mlogloss:0.529579	val-mlogloss:0.57462
[130]	train-mlogloss:0.528915	val-mlogloss:0.574171
[131]	train-mlogloss:0.528234	val-mlogloss:0.57379
[132]	train-mlogloss:0.527525	val-mlogloss:0.573392
[133]	train-mlogloss:0.52684	val-mlogloss:0.57292
[134]	train-mlogloss:0.52614	val-mlogloss:0.572507
[135]	train-mlogloss:0.525406	val-mlogloss:0.572068
[136]	train-mlogloss:0.524808	val-mlogloss:0.571702
[137]	train-mlogloss:0.524142	val-mlogloss:0.571292
[138]	train-mlogloss:0.523411	val-mlogloss:0.570863
[139]	train-mlogloss:0.522725	val-mlogloss:0.570455
[140]	train-mlogloss:0.522151	val-mlogloss:0.570082
[141]	train-mlogloss:0.521466	val-mlogloss:0.569587
[142]	train-mlogloss:0.520799	val-mlogloss:0.569195
[143]	train-mlogloss:0.520182	val-mlogloss:0.568809
[144]	train-mlogloss:0.519479	val-mlogloss:0.568464
[145]	train-mlogloss:0.518863	val-mlogloss:0.568147
[146]	train-mlogloss:0.518224	val-mlogloss:0.567792
[147]	train-mlogloss:0.51762	val-mlogloss:0.567481
[148]	train-mlogloss:0.517022	val-mlogloss:0.567087
[149]	train-mlogloss:0.516461	val-mlogloss:0.566718
[150]	train-mlogloss:0.515825	val-mlogloss:0.566333
[151]	train-mlogloss:0.515273	val-mlogloss:0.565989
[152]	train-mlogloss:0.514678	val-mlogloss:0.565621
[153]	train-mlogloss:0.514159	val-mlogloss:0.565331
[154]	train-mlogloss:0.513648	val-mlogloss:0.565005
[155]	train-mlogloss:0.513074	val-mlogloss:0.56471
[156]	train-mlogloss:0.512547	val-mlogloss:0.564468
[157]	train-mlogloss:0.511923	val-mlogloss:0.564102
[158]	train-mlogloss:0.511411	val-mlogloss:0.563827
[159]	train-mlogloss:0.510778	val-mlogloss:0.563483
[160]	train-mlogloss:0.510313	val-mlogloss:0.563274
[161]	train-mlogloss:0.509711	val-mlogloss:0.56301
[162]	train-mlogloss:0.50914	val-mlogloss:0.562714
[163]	train-mlogloss:0.508492	val-mlogloss:0.562426
[164]	train-mlogloss:0.507943	val-mlogloss:0.562215
[165]	train-mlogloss:0.507426	val-mlogloss:0.56191
[166]	train-mlogloss:0.506847	val-mlogloss:0.561624
[167]	train-mlogloss:0.506326	val-mlogloss:0.561331
[168]	train-mlogloss:0.505887	val-mlogloss:0.561086
[169]	train-mlogloss:0.505338	val-mlogloss:0.560864
[170]	train-mlogloss:0.504877	val-mlogloss:0.560647
[171]	train-mlogloss:0.504194	val-mlogloss:0.560321
[172]	train-mlogloss:0.503824	val-mlogloss:0.560112
[173]	train-mlogloss:0.503385	val-mlogloss:0.559882
[174]	train-mlogloss:0.502722	val-mlogloss:0.559504
[175]	train-mlogloss:0.502224	val-mlogloss:0.559311
[176]	train-mlogloss:0.501795	val-mlogloss:0.559084
[177]	train-mlogloss:0.50141	val-mlogloss:0.558864
[178]	train-mlogloss:0.500948	val-mlogloss:0.558714
[179]	train-mlogloss:0.50043	val-mlogloss:0.558479
[180]	train-mlogloss:0.499915	val-mlogloss:0.558233
[181]	train-mlogloss:0.499412	val-mlogloss:0.557988
[182]	train-mlogloss:0.498959	val-mlogloss:0.55773
[183]	train-mlogloss:0.498605	val-mlogloss:0.557536
[184]	train-mlogloss:0.498041	val-mlogloss:0.557348
[185]	train-mlogloss:0.497586	val-mlogloss:0.557168
[186]	train-mlogloss:0.497112	val-mlogloss:0.556978
[187]	train-mlogloss:0.496679	val-mlogloss:0.556789
[188]	train-mlogloss:0.496312	val-mlogloss:0.556634
[189]	train-mlogloss:0.495836	val-mlogloss:0.556458
[190]	train-mlogloss:0.495502	val-mlogloss:0.55629
[191]	train-mlogloss:0.495037	val-mlogloss:0.55608
[192]	train-mlogloss:0.494555	val-mlogloss:0.555862
[193]	train-mlogloss:0.494057	val-mlogloss:0.555644
[194]	train-mlogloss:0.493559	val-mlogloss:0.555467
[195]	train-mlogloss:0.493131	val-mlogloss:0.555313
[196]	train-mlogloss:0.492775	val-mlogloss:0.555126
[197]	train-mlogloss:0.492274	val-mlogloss:0.554935
[198]	train-mlogloss:0.491772	val-mlogloss:0.554739
[199]	train-mlogloss:0.4913	val-mlogloss:0.554586
[200]	train-mlogloss:0.491014	val-mlogloss:0.554454
[201]	train-mlogloss:0.490522	val-mlogloss:0.554262
[202]	train-mlogloss:0.490031	val-mlogloss:0.554088
[203]	train-mlogloss:0.489514	val-mlogloss:0.553818
[204]	train-mlogloss:0.488999	val-mlogloss:0.553673
[205]	train-mlogloss:0.488622	val-mlogloss:0.553532
[206]	train-mlogloss:0.488172	val-mlogloss:0.553354
[207]	train-mlogloss:0.487777	val-mlogloss:0.553213
[208]	train-mlogloss:0.487338	val-mlogloss:0.553077
[209]	train-mlogloss:0.486901	val-mlogloss:0.552915
[210]	train-mlogloss:0.486502	val-mlogloss:0.552746
[211]	train-mlogloss:0.486131	val-mlogloss:0.552577
[212]	train-mlogloss:0.485708	val-mlogloss:0.552356
[213]	train-mlogloss:0.485334	val-mlogloss:0.552202
[214]	train-mlogloss:0.484887	val-mlogloss:0.552055
[215]	train-mlogloss:0.484484	val-mlogloss:0.551843
[216]	train-mlogloss:0.484085	val-mlogloss:0.551672
[217]	train-mlogloss:0.483713	val-mlogloss:0.551558
[218]	train-mlogloss:0.483266	val-mlogloss:0.551436
[219]	train-mlogloss:0.482904	val-mlogloss:0.55128
[220]	train-mlogloss:0.48248	val-mlogloss:0.551123
[221]	train-mlogloss:0.482052	val-mlogloss:0.55102
[222]	train-mlogloss:0.481681	val-mlogloss:0.550838
[223]	train-mlogloss:0.481307	val-mlogloss:0.550671
[224]	train-mlogloss:0.480922	val-mlogloss:0.550494
[225]	train-mlogloss:0.480556	val-mlogloss:0.550353
[226]	train-mlogloss:0.48024	val-mlogloss:0.550225
[227]	train-mlogloss:0.479834	val-mlogloss:0.550061
[228]	train-mlogloss:0.479423	val-mlogloss:0.549881
[229]	train-mlogloss:0.4791	val-mlogloss:0.549767
[230]	train-mlogloss:0.478697	val-mlogloss:0.549616
[231]	train-mlogloss:0.478321	val-mlogloss:0.549483
[232]	train-mlogloss:0.477951	val-mlogloss:0.549339
[233]	train-mlogloss:0.477625	val-mlogloss:0.549255
[234]	train-mlogloss:0.477278	val-mlogloss:0.549154
[235]	train-mlogloss:0.476827	val-mlogloss:0.548966
[236]	train-mlogloss:0.476556	val-mlogloss:0.548858
[237]	train-mlogloss:0.4761	val-mlogloss:0.548707
[238]	train-mlogloss:0.475678	val-mlogloss:0.548514
[239]	train-mlogloss:0.475256	val-mlogloss:0.54832
[240]	train-mlogloss:0.474782	val-mlogloss:0.548096
[241]	train-mlogloss:0.474522	val-mlogloss:0.547993
[242]	train-mlogloss:0.474114	val-mlogloss:0.547796
[243]	train-mlogloss:0.473821	val-mlogloss:0.547709
[244]	train-mlogloss:0.473439	val-mlogloss:0.547635
[245]	train-mlogloss:0.473144	val-mlogloss:0.547539
[246]	train-mlogloss:0.472876	val-mlogloss:0.547442
[247]	train-mlogloss:0.472438	val-mlogloss:0.547291
[248]	train-mlogloss:0.47195	val-mlogloss:0.547194
[249]	train-mlogloss:0.471682	val-mlogloss:0.547138
[250]	train-mlogloss:0.471235	val-mlogloss:0.547013
[251]	train-mlogloss:0.470924	val-mlogloss:0.546895
[252]	train-mlogloss:0.470545	val-mlogloss:0.546813
[253]	train-mlogloss:0.47014	val-mlogloss:0.546683
[254]	train-mlogloss:0.46988	val-mlogloss:0.546611
[255]	train-mlogloss:0.469568	val-mlogloss:0.546468
[256]	train-mlogloss:0.469176	val-mlogloss:0.546273
[257]	train-mlogloss:0.468829	val-mlogloss:0.546137
[258]	train-mlogloss:0.468386	val-mlogloss:0.545996
[259]	train-mlogloss:0.468126	val-mlogloss:0.545901
[260]	train-mlogloss:0.467795	val-mlogloss:0.545771
[261]	train-mlogloss:0.467389	val-mlogloss:0.545609
[262]	train-mlogloss:0.467086	val-mlogloss:0.545525
[263]	train-mlogloss:0.466772	val-mlogloss:0.54541
[264]	train-mlogloss:0.466436	val-mlogloss:0.545337
[265]	train-mlogloss:0.466152	val-mlogloss:0.54519
[266]	train-mlogloss:0.465735	val-mlogloss:0.545104
[267]	train-mlogloss:0.465488	val-mlogloss:0.545013
[268]	train-mlogloss:0.46517	val-mlogloss:0.544908
[269]	train-mlogloss:0.464854	val-mlogloss:0.54488
[270]	train-mlogloss:0.464461	val-mlogloss:0.544777
[271]	train-mlogloss:0.464137	val-mlogloss:0.544708
[272]	train-mlogloss:0.463796	val-mlogloss:0.544596
[273]	train-mlogloss:0.463516	val-mlogloss:0.544477
[274]	train-mlogloss:0.463221	val-mlogloss:0.544369
[275]	train-mlogloss:0.462946	val-mlogloss:0.544281
[276]	train-mlogloss:0.462601	val-mlogloss:0.544176
[277]	train-mlogloss:0.462173	val-mlogloss:0.544094
[278]	train-mlogloss:0.461923	val-mlogloss:0.543989
[279]	train-mlogloss:0.461622	val-mlogloss:0.543913
[280]	train-mlogloss:0.461345	val-mlogloss:0.543853
[281]	train-mlogloss:0.460988	val-mlogloss:0.543743
[282]	train-mlogloss:0.460654	val-mlogloss:0.543645
[283]	train-mlogloss:0.460277	val-mlogloss:0.543504
[284]	train-mlogloss:0.459892	val-mlogloss:0.54337
[285]	train-mlogloss:0.459585	val-mlogloss:0.543276
[286]	train-mlogloss:0.459328	val-mlogloss:0.543235
[287]	train-mlogloss:0.459035	val-mlogloss:0.543095
[288]	train-mlogloss:0.458692	val-mlogloss:0.543007
[289]	train-mlogloss:0.458432	val-mlogloss:0.542939
[290]	train-mlogloss:0.458097	val-mlogloss:0.542896
[291]	train-mlogloss:0.457806	val-mlogloss:0.542807
[292]	train-mlogloss:0.457478	val-mlogloss:0.542716
[293]	train-mlogloss:0.457168	val-mlogloss:0.542649
[294]	train-mlogloss:0.456858	val-mlogloss:0.542595
[295]	train-mlogloss:0.456553	val-mlogloss:0.542535
[296]	train-mlogloss:0.456295	val-mlogloss:0.542484
[297]	train-mlogloss:0.455885	val-mlogloss:0.542342
[298]	train-mlogloss:0.455654	val-mlogloss:0.54229
[299]	train-mlogloss:0.455342	val-mlogloss:0.54222
[300]	train-mlogloss:0.455092	val-mlogloss:0.54214
[301]	train-mlogloss:0.454784	val-mlogloss:0.542078
[302]	train-mlogloss:0.454476	val-mlogloss:0.541947
[303]	train-mlogloss:0.454132	val-mlogloss:0.541854
[304]	train-mlogloss:0.453864	val-mlogloss:0.541802
[305]	train-mlogloss:0.453599	val-mlogloss:0.541736
[306]	train-mlogloss:0.453407	val-mlogloss:0.541658
[307]	train-mlogloss:0.453079	val-mlogloss:0.541568
[308]	train-mlogloss:0.452753	val-mlogloss:0.541502
[309]	train-mlogloss:0.452502	val-mlogloss:0.541462
[310]	train-mlogloss:0.452194	val-mlogloss:0.54137
[311]	train-mlogloss:0.451918	val-mlogloss:0.541327
[312]	train-mlogloss:0.451607	val-mlogloss:0.541245
[313]	train-mlogloss:0.451206	val-mlogloss:0.541089
[314]	train-mlogloss:0.45084	val-mlogloss:0.540933
[315]	train-mlogloss:0.450559	val-mlogloss:0.540909
[316]	train-mlogloss:0.450279	val-mlogloss:0.540862
[317]	train-mlogloss:0.449943	val-mlogloss:0.540784
[318]	train-mlogloss:0.449721	val-mlogloss:0.540718
[319]	train-mlogloss:0.449463	val-mlogloss:0.540698
[320]	train-mlogloss:0.449176	val-mlogloss:0.540607
[321]	train-mlogloss:0.448908	val-mlogloss:0.54055
[322]	train-mlogloss:0.448598	val-mlogloss:0.540439
[323]	train-mlogloss:0.448294	val-mlogloss:0.540319
[324]	train-mlogloss:0.448099	val-mlogloss:0.540277
[325]	train-mlogloss:0.447796	val-mlogloss:0.540241
[326]	train-mlogloss:0.447542	val-mlogloss:0.540204
[327]	train-mlogloss:0.447196	val-mlogloss:0.540093
[328]	train-mlogloss:0.446966	val-mlogloss:0.540052
[329]	train-mlogloss:0.446717	val-mlogloss:0.53999
[330]	train-mlogloss:0.44639	val-mlogloss:0.539948
[331]	train-mlogloss:0.446073	val-mlogloss:0.539887
[332]	train-mlogloss:0.445735	val-mlogloss:0.539823
[333]	train-mlogloss:0.445437	val-mlogloss:0.539733
[334]	train-mlogloss:0.445104	val-mlogloss:0.539655
[335]	train-mlogloss:0.444858	val-mlogloss:0.539641
[336]	train-mlogloss:0.444542	val-mlogloss:0.539615
[337]	train-mlogloss:0.44428	val-mlogloss:0.539558
[338]	train-mlogloss:0.444003	val-mlogloss:0.53947
[339]	train-mlogloss:0.443807	val-mlogloss:0.539469
[340]	train-mlogloss:0.443548	val-mlogloss:0.539438
[341]	train-mlogloss:0.443184	val-mlogloss:0.539363
[342]	train-mlogloss:0.442864	val-mlogloss:0.539264
[343]	train-mlogloss:0.442622	val-mlogloss:0.539177
[344]	train-mlogloss:0.442296	val-mlogloss:0.539098
[345]	train-mlogloss:0.441959	val-mlogloss:0.539005
[346]	train-mlogloss:0.441677	val-mlogloss:0.538953
[347]	train-mlogloss:0.44139	val-mlogloss:0.538903
[348]	train-mlogloss:0.441151	val-mlogloss:0.538831
[349]	train-mlogloss:0.440919	val-mlogloss:0.538796
[350]	train-mlogloss:0.440697	val-mlogloss:0.53872
[351]	train-mlogloss:0.440466	val-mlogloss:0.538658
[352]	train-mlogloss:0.440208	val-mlogloss:0.538613
[353]	train-mlogloss:0.439925	val-mlogloss:0.538599
[354]	train-mlogloss:0.43968	val-mlogloss:0.53855
[355]	train-mlogloss:0.439347	val-mlogloss:0.538438
[356]	train-mlogloss:0.439114	val-mlogloss:0.538386
[357]	train-mlogloss:0.438864	val-mlogloss:0.538345
[358]	train-mlogloss:0.438596	val-mlogloss:0.538306
[359]	train-mlogloss:0.438366	val-mlogloss:0.538291
[360]	train-mlogloss:0.438161	val-mlogloss:0.538264
[361]	train-mlogloss:0.437841	val-mlogloss:0.53822
[362]	train-mlogloss:0.437565	val-mlogloss:0.538169
[363]	train-mlogloss:0.43734	val-mlogloss:0.538089
[364]	train-mlogloss:0.43705	val-mlogloss:0.538017
[365]	train-mlogloss:0.436791	val-mlogloss:0.537943
[366]	train-mlogloss:0.436578	val-mlogloss:0.537864
[367]	train-mlogloss:0.436303	val-mlogloss:0.537836
[368]	train-mlogloss:0.436121	val-mlogloss:0.537793
[369]	train-mlogloss:0.435828	val-mlogloss:0.537731
[370]	train-mlogloss:0.435571	val-mlogloss:0.537667
[371]	train-mlogloss:0.43533	val-mlogloss:0.537633
[372]	train-mlogloss:0.434985	val-mlogloss:0.537562
[373]	train-mlogloss:0.434739	val-mlogloss:0.537511
[374]	train-mlogloss:0.434478	val-mlogloss:0.537465
[375]	train-mlogloss:0.434166	val-mlogloss:0.537389
[376]	train-mlogloss:0.433929	val-mlogloss:0.537319
[377]	train-mlogloss:0.433727	val-mlogloss:0.537248
[378]	train-mlogloss:0.433443	val-mlogloss:0.53719
[379]	train-mlogloss:0.433186	val-mlogloss:0.537176
[380]	train-mlogloss:0.432813	val-mlogloss:0.537128
[381]	train-mlogloss:0.432584	val-mlogloss:0.537093
[382]	train-mlogloss:0.432286	val-mlogloss:0.537075
[383]	train-mlogloss:0.432027	val-mlogloss:0.536999
[384]	train-mlogloss:0.431816	val-mlogloss:0.536964
[385]	train-mlogloss:0.431604	val-mlogloss:0.536911
[386]	train-mlogloss:0.431403	val-mlogloss:0.536867
[387]	train-mlogloss:0.431069	val-mlogloss:0.536812
[388]	train-mlogloss:0.430863	val-mlogloss:0.536729
[389]	train-mlogloss:0.430614	val-mlogloss:0.536674
[390]	train-mlogloss:0.43032	val-mlogloss:0.536634
[391]	train-mlogloss:0.430117	val-mlogloss:0.536609
[392]	train-mlogloss:0.429852	val-mlogloss:0.536561
[393]	train-mlogloss:0.429607	val-mlogloss:0.536506
[394]	train-mlogloss:0.429291	val-mlogloss:0.536399
[395]	train-mlogloss:0.429005	val-mlogloss:0.536394
[396]	train-mlogloss:0.428724	val-mlogloss:0.53637
[397]	train-mlogloss:0.428515	val-mlogloss:0.536372
[398]	train-mlogloss:0.428254	val-mlogloss:0.536329
[399]	train-mlogloss:0.428066	val-mlogloss:0.536281
[400]	train-mlogloss:0.427827	val-mlogloss:0.536236
[401]	train-mlogloss:0.42757	val-mlogloss:0.536157
[402]	train-mlogloss:0.427341	val-mlogloss:0.536099
[403]	train-mlogloss:0.427075	val-mlogloss:0.536075
[404]	train-mlogloss:0.426752	val-mlogloss:0.536009
[405]	train-mlogloss:0.426525	val-mlogloss:0.535993
[406]	train-mlogloss:0.426295	val-mlogloss:0.535983
[407]	train-mlogloss:0.426062	val-mlogloss:0.535922
[408]	train-mlogloss:0.425893	val-mlogloss:0.535912
[409]	train-mlogloss:0.4257	val-mlogloss:0.535845
[410]	train-mlogloss:0.425498	val-mlogloss:0.5358
[411]	train-mlogloss:0.425284	val-mlogloss:0.535748
[412]	train-mlogloss:0.4251	val-mlogloss:0.535748
[413]	train-mlogloss:0.424849	val-mlogloss:0.535719
[414]	train-mlogloss:0.424618	val-mlogloss:0.535705
[415]	train-mlogloss:0.424405	val-mlogloss:0.535657
[416]	train-mlogloss:0.424185	val-mlogloss:0.535595
[417]	train-mlogloss:0.423857	val-mlogloss:0.53555
[418]	train-mlogloss:0.423503	val-mlogloss:0.535484
[419]	train-mlogloss:0.423306	val-mlogloss:0.535468
[420]	train-mlogloss:0.423028	val-mlogloss:0.535415
[421]	train-mlogloss:0.422753	val-mlogloss:0.535397
[422]	train-mlogloss:0.422489	val-mlogloss:0.535345
[423]	train-mlogloss:0.422228	val-mlogloss:0.535344
[424]	train-mlogloss:0.421967	val-mlogloss:0.535285
[425]	train-mlogloss:0.421725	val-mlogloss:0.535275
[426]	train-mlogloss:0.421438	val-mlogloss:0.535273
[427]	train-mlogloss:0.421157	val-mlogloss:0.535245
[428]	train-mlogloss:0.420903	val-mlogloss:0.535241
[429]	train-mlogloss:0.420624	val-mlogloss:0.535182
[430]	train-mlogloss:0.420317	val-mlogloss:0.535113
[431]	train-mlogloss:0.420126	val-mlogloss:0.535083
[432]	train-mlogloss:0.419974	val-mlogloss:0.535054
[433]	train-mlogloss:0.419758	val-mlogloss:0.535035
[434]	train-mlogloss:0.419531	val-mlogloss:0.534984
[435]	train-mlogloss:0.419342	val-mlogloss:0.53494
[436]	train-mlogloss:0.419105	val-mlogloss:0.534909
[437]	train-mlogloss:0.418856	val-mlogloss:0.534848
[438]	train-mlogloss:0.418653	val-mlogloss:0.534776
[439]	train-mlogloss:0.418391	val-mlogloss:0.534749
[440]	train-mlogloss:0.418147	val-mlogloss:0.534706
[441]	train-mlogloss:0.418	val-mlogloss:0.534683
[442]	train-mlogloss:0.41779	val-mlogloss:0.534652
[443]	train-mlogloss:0.417577	val-mlogloss:0.534672
[444]	train-mlogloss:0.417349	val-mlogloss:0.53463
[445]	train-mlogloss:0.41707	val-mlogloss:0.53459
[446]	train-mlogloss:0.416894	val-mlogloss:0.534562
[447]	train-mlogloss:0.416622	val-mlogloss:0.534546
[448]	train-mlogloss:0.41633	val-mlogloss:0.534522
[449]	train-mlogloss:0.416081	val-mlogloss:0.534446
[450]	train-mlogloss:0.41583	val-mlogloss:0.534364
[451]	train-mlogloss:0.415613	val-mlogloss:0.53435
[452]	train-mlogloss:0.4154	val-mlogloss:0.534326
[453]	train-mlogloss:0.415168	val-mlogloss:0.534286
[454]	train-mlogloss:0.414956	val-mlogloss:0.534221
[455]	train-mlogloss:0.414724	val-mlogloss:0.534188
[456]	train-mlogloss:0.414436	val-mlogloss:0.534123
[457]	train-mlogloss:0.414227	val-mlogloss:0.534082
[458]	train-mlogloss:0.414065	val-mlogloss:0.534052
[459]	train-mlogloss:0.413851	val-mlogloss:0.534033
[460]	train-mlogloss:0.413577	val-mlogloss:0.533996
[461]	train-mlogloss:0.413424	val-mlogloss:0.534
[462]	train-mlogloss:0.413143	val-mlogloss:0.533927
[463]	train-mlogloss:0.41288	val-mlogloss:0.533921
[464]	train-mlogloss:0.412643	val-mlogloss:0.533874
[465]	train-mlogloss:0.412391	val-mlogloss:0.533789
[466]	train-mlogloss:0.412119	val-mlogloss:0.533753
[467]	train-mlogloss:0.411828	val-mlogloss:0.533719
[468]	train-mlogloss:0.411632	val-mlogloss:0.533683
[469]	train-mlogloss:0.411296	val-mlogloss:0.5337
[470]	train-mlogloss:0.411049	val-mlogloss:0.533658
[471]	train-mlogloss:0.410871	val-mlogloss:0.533623
[472]	train-mlogloss:0.410633	val-mlogloss:0.533589
[473]	train-mlogloss:0.410497	val-mlogloss:0.533572
[474]	train-mlogloss:0.410275	val-mlogloss:0.533513
[475]	train-mlogloss:0.409982	val-mlogloss:0.53348
[476]	train-mlogloss:0.409727	val-mlogloss:0.533397
[477]	train-mlogloss:0.409503	val-mlogloss:0.533378
[478]	train-mlogloss:0.409309	val-mlogloss:0.533349
[479]	train-mlogloss:0.40913	val-mlogloss:0.533335
[480]	train-mlogloss:0.40888	val-mlogloss:0.533341
[481]	train-mlogloss:0.408617	val-mlogloss:0.533373
[482]	train-mlogloss:0.40845	val-mlogloss:0.533363
[483]	train-mlogloss:0.408209	val-mlogloss:0.53335
[484]	train-mlogloss:0.407977	val-mlogloss:0.533313
[485]	train-mlogloss:0.407754	val-mlogloss:0.53326
[486]	train-mlogloss:0.40757	val-mlogloss:0.533211
[487]	train-mlogloss:0.407308	val-mlogloss:0.533185
[488]	train-mlogloss:0.407083	val-mlogloss:0.533156
[489]	train-mlogloss:0.406826	val-mlogloss:0.533116
[490]	train-mlogloss:0.406605	val-mlogloss:0.53306
[491]	train-mlogloss:0.406418	val-mlogloss:0.533
[492]	train-mlogloss:0.406228	val-mlogloss:0.532974
[493]	train-mlogloss:0.405909	val-mlogloss:0.532935
[494]	train-mlogloss:0.405717	val-mlogloss:0.532945
[495]	train-mlogloss:0.405475	val-mlogloss:0.532924
[496]	train-mlogloss:0.405227	val-mlogloss:0.532901
[497]	train-mlogloss:0.405005	val-mlogloss:0.532863
[498]	train-mlogloss:0.404825	val-mlogloss:0.532839
[499]	train-mlogloss:0.404611	val-mlogloss:0.532807
[500]	train-mlogloss:0.404347	val-mlogloss:0.532769
[501]	train-mlogloss:0.404165	val-mlogloss:0.532732
[502]	train-mlogloss:0.403995	val-mlogloss:0.532718
[503]	train-mlogloss:0.40374	val-mlogloss:0.532692
[504]	train-mlogloss:0.403487	val-mlogloss:0.532657
[505]	train-mlogloss:0.403253	val-mlogloss:0.532668
[506]	train-mlogloss:0.403024	val-mlogloss:0.532604
[507]	train-mlogloss:0.402878	val-mlogloss:0.53258
[508]	train-mlogloss:0.402583	val-mlogloss:0.532574
[509]	train-mlogloss:0.402391	val-mlogloss:0.532562
[510]	train-mlogloss:0.402123	val-mlogloss:0.532543
[511]	train-mlogloss:0.401848	val-mlogloss:0.532544
[512]	train-mlogloss:0.401592	val-mlogloss:0.532547
[513]	train-mlogloss:0.401377	val-mlogloss:0.532523
[514]	train-mlogloss:0.401149	val-mlogloss:0.532449
[515]	train-mlogloss:0.400961	val-mlogloss:0.532424
[516]	train-mlogloss:0.40074	val-mlogloss:0.53241
[517]	train-mlogloss:0.400562	val-mlogloss:0.532416
[518]	train-mlogloss:0.400317	val-mlogloss:0.532407
[519]	train-mlogloss:0.400131	val-mlogloss:0.532381
[520]	train-mlogloss:0.399914	val-mlogloss:0.532332
[521]	train-mlogloss:0.399687	val-mlogloss:0.532339
[522]	train-mlogloss:0.39945	val-mlogloss:0.532308
[523]	train-mlogloss:0.399192	val-mlogloss:0.532268
[524]	train-mlogloss:0.399026	val-mlogloss:0.532239
[525]	train-mlogloss:0.398802	val-mlogloss:0.532231
[526]	train-mlogloss:0.398523	val-mlogloss:0.532236
[527]	train-mlogloss:0.398296	val-mlogloss:0.532219
[528]	train-mlogloss:0.398083	val-mlogloss:0.532229
[529]	train-mlogloss:0.397857	val-mlogloss:0.532183
[530]	train-mlogloss:0.397652	val-mlogloss:0.532148
[531]	train-mlogloss:0.397416	val-mlogloss:0.532176
[532]	train-mlogloss:0.397274	val-mlogloss:0.532153
[533]	train-mlogloss:0.397077	val-mlogloss:0.532155
[534]	train-mlogloss:0.396854	val-mlogloss:0.532126
[535]	train-mlogloss:0.396572	val-mlogloss:0.532087
[536]	train-mlogloss:0.39641	val-mlogloss:0.532052
[537]	train-mlogloss:0.396096	val-mlogloss:0.532069
[538]	train-mlogloss:0.395866	val-mlogloss:0.532074
[539]	train-mlogloss:0.395637	val-mlogloss:0.532056
[540]	train-mlogloss:0.395403	val-mlogloss:0.532004
[541]	train-mlogloss:0.3953	val-mlogloss:0.531977
[542]	train-mlogloss:0.395063	val-mlogloss:0.531915
[543]	train-mlogloss:0.394895	val-mlogloss:0.531895
[544]	train-mlogloss:0.394679	val-mlogloss:0.531843
[545]	train-mlogloss:0.394483	val-mlogloss:0.531867
[546]	train-mlogloss:0.394297	val-mlogloss:0.531874
[547]	train-mlogloss:0.394047	val-mlogloss:0.531825
[548]	train-mlogloss:0.393802	val-mlogloss:0.531789
[549]	train-mlogloss:0.393579	val-mlogloss:0.531719
[550]	train-mlogloss:0.39329	val-mlogloss:0.531724
[551]	train-mlogloss:0.393083	val-mlogloss:0.531698
[552]	train-mlogloss:0.392835	val-mlogloss:0.53163
[553]	train-mlogloss:0.392673	val-mlogloss:0.531625
[554]	train-mlogloss:0.392466	val-mlogloss:0.531594
[555]	train-mlogloss:0.392301	val-mlogloss:0.531558
[556]	train-mlogloss:0.392091	val-mlogloss:0.531513
[557]	train-mlogloss:0.391933	val-mlogloss:0.531518
[558]	train-mlogloss:0.391777	val-mlogloss:0.53148
[559]	train-mlogloss:0.391618	val-mlogloss:0.531412
[560]	train-mlogloss:0.391424	val-mlogloss:0.531417
[561]	train-mlogloss:0.39127	val-mlogloss:0.531427
[562]	train-mlogloss:0.391068	val-mlogloss:0.531452
[563]	train-mlogloss:0.390874	val-mlogloss:0.531434
[564]	train-mlogloss:0.390729	val-mlogloss:0.531412
[565]	train-mlogloss:0.390565	val-mlogloss:0.531439
[566]	train-mlogloss:0.390371	val-mlogloss:0.531421
[567]	train-mlogloss:0.390236	val-mlogloss:0.531409
[568]	train-mlogloss:0.390034	val-mlogloss:0.53139
[569]	train-mlogloss:0.389774	val-mlogloss:0.531361
[570]	train-mlogloss:0.389525	val-mlogloss:0.531359
[571]	train-mlogloss:0.389307	val-mlogloss:0.531307
[572]	train-mlogloss:0.389181	val-mlogloss:0.531334
[573]	train-mlogloss:0.388955	val-mlogloss:0.531288
[574]	train-mlogloss:0.388759	val-mlogloss:0.531258
[575]	train-mlogloss:0.388543	val-mlogloss:0.531203
[576]	train-mlogloss:0.388378	val-mlogloss:0.531185
[577]	train-mlogloss:0.388173	val-mlogloss:0.531142
[578]	train-mlogloss:0.387999	val-mlogloss:0.531146
[579]	train-mlogloss:0.387758	val-mlogloss:0.531154
[580]	train-mlogloss:0.387511	val-mlogloss:0.531132
[581]	train-mlogloss:0.387299	val-mlogloss:0.531139
[582]	train-mlogloss:0.387121	val-mlogloss:0.531144
[583]	train-mlogloss:0.386876	val-mlogloss:0.531094
[584]	train-mlogloss:0.386697	val-mlogloss:0.531095
[585]	train-mlogloss:0.386519	val-mlogloss:0.531069
[586]	train-mlogloss:0.386317	val-mlogloss:0.531046
[587]	train-mlogloss:0.386084	val-mlogloss:0.531031
[588]	train-mlogloss:0.385884	val-mlogloss:0.531043
[589]	train-mlogloss:0.385703	val-mlogloss:0.531037
[590]	train-mlogloss:0.385488	val-mlogloss:0.531025
[591]	train-mlogloss:0.385244	val-mlogloss:0.531008
[592]	train-mlogloss:0.385013	val-mlogloss:0.530993
[593]	train-mlogloss:0.384836	val-mlogloss:0.530982
[594]	train-mlogloss:0.384638	val-mlogloss:0.530971
[595]	train-mlogloss:0.384367	val-mlogloss:0.530928
[596]	train-mlogloss:0.384174	val-mlogloss:0.530948
[597]	train-mlogloss:0.384015	val-mlogloss:0.530927
[598]	train-mlogloss:0.383822	val-mlogloss:0.530909
[599]	train-mlogloss:0.383666	val-mlogloss:0.530872
[600]	train-mlogloss:0.383491	val-mlogloss:0.53084
[601]	train-mlogloss:0.383293	val-mlogloss:0.530832
[602]	train-mlogloss:0.383134	val-mlogloss:0.530812
[603]	train-mlogloss:0.382939	val-mlogloss:0.530774
[604]	train-mlogloss:0.382739	val-mlogloss:0.530755
[605]	train-mlogloss:0.382487	val-mlogloss:0.530744
[606]	train-mlogloss:0.382301	val-mlogloss:0.530733
[607]	train-mlogloss:0.382084	val-mlogloss:0.530743
[608]	train-mlogloss:0.381908	val-mlogloss:0.53074
[609]	train-mlogloss:0.381746	val-mlogloss:0.53071
[610]	train-mlogloss:0.381495	val-mlogloss:0.5307
[611]	train-mlogloss:0.381332	val-mlogloss:0.530668
[612]	train-mlogloss:0.381194	val-mlogloss:0.53066
[613]	train-mlogloss:0.38097	val-mlogloss:0.530631
[614]	train-mlogloss:0.380795	val-mlogloss:0.53062
[615]	train-mlogloss:0.380611	val-mlogloss:0.530594
[616]	train-mlogloss:0.380388	val-mlogloss:0.530599
[617]	train-mlogloss:0.380182	val-mlogloss:0.530581
[618]	train-mlogloss:0.380045	val-mlogloss:0.530577
[619]	train-mlogloss:0.379824	val-mlogloss:0.530591
[620]	train-mlogloss:0.379641	val-mlogloss:0.530617
[621]	train-mlogloss:0.379495	val-mlogloss:0.530638
[622]	train-mlogloss:0.379228	val-mlogloss:0.530603
[623]	train-mlogloss:0.379061	val-mlogloss:0.530598
[624]	train-mlogloss:0.378914	val-mlogloss:0.53055
[625]	train-mlogloss:0.378729	val-mlogloss:0.530569
[626]	train-mlogloss:0.378481	val-mlogloss:0.53057
[627]	train-mlogloss:0.378354	val-mlogloss:0.530556
[628]	train-mlogloss:0.378169	val-mlogloss:0.530545
[629]	train-mlogloss:0.377951	val-mlogloss:0.530539
[630]	train-mlogloss:0.377734	val-mlogloss:0.530483
[631]	train-mlogloss:0.377538	val-mlogloss:0.530468
[632]	train-mlogloss:0.377263	val-mlogloss:0.530458
[633]	train-mlogloss:0.377066	val-mlogloss:0.53047
[634]	train-mlogloss:0.376929	val-mlogloss:0.530463
[635]	train-mlogloss:0.376689	val-mlogloss:0.530469
[636]	train-mlogloss:0.376533	val-mlogloss:0.530459
[637]	train-mlogloss:0.376369	val-mlogloss:0.530433
[638]	train-mlogloss:0.37621	val-mlogloss:0.530417
[639]	train-mlogloss:0.376024	val-mlogloss:0.530419
[640]	train-mlogloss:0.375827	val-mlogloss:0.530422
[641]	train-mlogloss:0.375651	val-mlogloss:0.530397
[642]	train-mlogloss:0.375448	val-mlogloss:0.530358
[643]	train-mlogloss:0.375295	val-mlogloss:0.530352
[644]	train-mlogloss:0.375146	val-mlogloss:0.530341
[645]	train-mlogloss:0.374921	val-mlogloss:0.530315
[646]	train-mlogloss:0.374725	val-mlogloss:0.530336
[647]	train-mlogloss:0.374505	val-mlogloss:0.530362
[648]	train-mlogloss:0.374301	val-mlogloss:0.53036
[649]	train-mlogloss:0.374174	val-mlogloss:0.530327
[650]	train-mlogloss:0.373984	val-mlogloss:0.530322
[651]	train-mlogloss:0.373813	val-mlogloss:0.530311
[652]	train-mlogloss:0.373651	val-mlogloss:0.53033
[653]	train-mlogloss:0.373483	val-mlogloss:0.530303
[654]	train-mlogloss:0.373322	val-mlogloss:0.530308
[655]	train-mlogloss:0.373167	val-mlogloss:0.530303
[656]	train-mlogloss:0.372985	val-mlogloss:0.530271
[657]	train-mlogloss:0.372781	val-mlogloss:0.530266
[658]	train-mlogloss:0.372541	val-mlogloss:0.530246
[659]	train-mlogloss:0.372371	val-mlogloss:0.530231
[660]	train-mlogloss:0.372161	val-mlogloss:0.530189
[661]	train-mlogloss:0.371922	val-mlogloss:0.530195
[662]	train-mlogloss:0.3717	val-mlogloss:0.530172
[663]	train-mlogloss:0.371547	val-mlogloss:0.530153
[664]	train-mlogloss:0.37134	val-mlogloss:0.530131
[665]	train-mlogloss:0.371198	val-mlogloss:0.530149
[666]	train-mlogloss:0.370969	val-mlogloss:0.530102
[667]	train-mlogloss:0.370826	val-mlogloss:0.530112
[668]	train-mlogloss:0.370588	val-mlogloss:0.530111
[669]	train-mlogloss:0.370424	val-mlogloss:0.530105
[670]	train-mlogloss:0.370227	val-mlogloss:0.53011
[671]	train-mlogloss:0.370045	val-mlogloss:0.530078
[672]	train-mlogloss:0.369976	val-mlogloss:0.530092
[673]	train-mlogloss:0.369767	val-mlogloss:0.530055
[674]	train-mlogloss:0.369582	val-mlogloss:0.530036
[675]	train-mlogloss:0.369427	val-mlogloss:0.530048
[676]	train-mlogloss:0.369241	val-mlogloss:0.530013
[677]	train-mlogloss:0.369055	val-mlogloss:0.530006
[678]	train-mlogloss:0.368828	val-mlogloss:0.529989
[679]	train-mlogloss:0.368624	val-mlogloss:0.529949
[680]	train-mlogloss:0.3685	val-mlogloss:0.529944
[681]	train-mlogloss:0.368352	val-mlogloss:0.529901
[682]	train-mlogloss:0.368102	val-mlogloss:0.529912
[683]	train-mlogloss:0.368001	val-mlogloss:0.529913
[684]	train-mlogloss:0.367838	val-mlogloss:0.52986
[685]	train-mlogloss:0.367654	val-mlogloss:0.529839
[686]	train-mlogloss:0.367435	val-mlogloss:0.529797
[687]	train-mlogloss:0.367231	val-mlogloss:0.529733
[688]	train-mlogloss:0.367037	val-mlogloss:0.529751
[689]	train-mlogloss:0.366882	val-mlogloss:0.529742
[690]	train-mlogloss:0.366764	val-mlogloss:0.529728
[691]	train-mlogloss:0.366565	val-mlogloss:0.529707
[692]	train-mlogloss:0.366462	val-mlogloss:0.529714
[693]	train-mlogloss:0.366276	val-mlogloss:0.529693
[694]	train-mlogloss:0.366093	val-mlogloss:0.529666
[695]	train-mlogloss:0.365891	val-mlogloss:0.529672
[696]	train-mlogloss:0.365695	val-mlogloss:0.529673
[697]	train-mlogloss:0.365548	val-mlogloss:0.52968
[698]	train-mlogloss:0.36534	val-mlogloss:0.529655
[699]	train-mlogloss:0.365157	val-mlogloss:0.529637
[700]	train-mlogloss:0.365005	val-mlogloss:0.529602
[701]	train-mlogloss:0.364825	val-mlogloss:0.529598
[702]	train-mlogloss:0.364671	val-mlogloss:0.529579
[703]	train-mlogloss:0.364583	val-mlogloss:0.529598
[704]	train-mlogloss:0.364354	val-mlogloss:0.529547
[705]	train-mlogloss:0.364188	val-mlogloss:0.529547
[706]	train-mlogloss:0.364053	val-mlogloss:0.529544
[707]	train-mlogloss:0.363931	val-mlogloss:0.529542
[708]	train-mlogloss:0.363772	val-mlogloss:0.529559
[709]	train-mlogloss:0.363585	val-mlogloss:0.529558
[710]	train-mlogloss:0.363391	val-mlogloss:0.529542
[711]	train-mlogloss:0.363147	val-mlogloss:0.529501
[712]	train-mlogloss:0.362987	val-mlogloss:0.529502
[713]	train-mlogloss:0.362768	val-mlogloss:0.529507
[714]	train-mlogloss:0.362637	val-mlogloss:0.529502
[715]	train-mlogloss:0.362484	val-mlogloss:0.52949
[716]	train-mlogloss:0.362332	val-mlogloss:0.529469
[717]	train-mlogloss:0.362176	val-mlogloss:0.529442
[718]	train-mlogloss:0.362007	val-mlogloss:0.529425
[719]	train-mlogloss:0.361843	val-mlogloss:0.529423
[720]	train-mlogloss:0.361663	val-mlogloss:0.529398
[721]	train-mlogloss:0.361499	val-mlogloss:0.529396
[722]	train-mlogloss:0.361312	val-mlogloss:0.529403
[723]	train-mlogloss:0.36117	val-mlogloss:0.529364
[724]	train-mlogloss:0.361007	val-mlogloss:0.529385
[725]	train-mlogloss:0.360872	val-mlogloss:0.529355
[726]	train-mlogloss:0.360703	val-mlogloss:0.529349
[727]	train-mlogloss:0.360534	val-mlogloss:0.529382
[728]	train-mlogloss:0.36037	val-mlogloss:0.529366
[729]	train-mlogloss:0.360164	val-mlogloss:0.52935
[730]	train-mlogloss:0.360009	val-mlogloss:0.529362
[731]	train-mlogloss:0.359822	val-mlogloss:0.529353
[732]	train-mlogloss:0.359647	val-mlogloss:0.529388
[733]	train-mlogloss:0.359518	val-mlogloss:0.529377
[734]	train-mlogloss:0.359287	val-mlogloss:0.529375
[735]	train-mlogloss:0.359131	val-mlogloss:0.529364
[736]	train-mlogloss:0.35893	val-mlogloss:0.529366
[737]	train-mlogloss:0.358716	val-mlogloss:0.529358
[738]	train-mlogloss:0.358518	val-mlogloss:0.529371
[739]	train-mlogloss:0.358307	val-mlogloss:0.529347
[740]	train-mlogloss:0.35806	val-mlogloss:0.529345
[741]	train-mlogloss:0.357868	val-mlogloss:0.529317
[742]	train-mlogloss:0.357685	val-mlogloss:0.529284
[743]	train-mlogloss:0.357547	val-mlogloss:0.529279
[744]	train-mlogloss:0.357344	val-mlogloss:0.529276
[745]	train-mlogloss:0.357131	val-mlogloss:0.529293
[746]	train-mlogloss:0.356933	val-mlogloss:0.529295
[747]	train-mlogloss:0.356697	val-mlogloss:0.529294
[748]	train-mlogloss:0.356465	val-mlogloss:0.529275
[749]	train-mlogloss:0.356225	val-mlogloss:0.529257
[750]	train-mlogloss:0.356059	val-mlogloss:0.52922
[751]	train-mlogloss:0.355889	val-mlogloss:0.529248
[752]	train-mlogloss:0.355727	val-mlogloss:0.52926
[753]	train-mlogloss:0.355529	val-mlogloss:0.529223
[754]	train-mlogloss:0.35535	val-mlogloss:0.529191
[755]	train-mlogloss:0.355193	val-mlogloss:0.529187
[756]	train-mlogloss:0.355031	val-mlogloss:0.529181
[757]	train-mlogloss:0.354869	val-mlogloss:0.529159
[758]	train-mlogloss:0.35469	val-mlogloss:0.52913
[759]	train-mlogloss:0.354568	val-mlogloss:0.52913
[760]	train-mlogloss:0.354407	val-mlogloss:0.529137
[761]	train-mlogloss:0.354247	val-mlogloss:0.52914
[762]	train-mlogloss:0.354086	val-mlogloss:0.529119
[763]	train-mlogloss:0.353918	val-mlogloss:0.529087
[764]	train-mlogloss:0.353751	val-mlogloss:0.529055
[765]	train-mlogloss:0.353562	val-mlogloss:0.529042
[766]	train-mlogloss:0.353348	val-mlogloss:0.529034
[767]	train-mlogloss:0.353137	val-mlogloss:0.529034
[768]	train-mlogloss:0.352974	val-mlogloss:0.529026
[769]	train-mlogloss:0.352808	val-mlogloss:0.528997
[770]	train-mlogloss:0.352609	val-mlogloss:0.528968
[771]	train-mlogloss:0.352416	val-mlogloss:0.528965
[772]	train-mlogloss:0.35222	val-mlogloss:0.528975
[773]	train-mlogloss:0.352013	val-mlogloss:0.528964
[774]	train-mlogloss:0.351832	val-mlogloss:0.528953
[775]	train-mlogloss:0.351657	val-mlogloss:0.528967
[776]	train-mlogloss:0.351495	val-mlogloss:0.528971
[777]	train-mlogloss:0.351333	val-mlogloss:0.528979
[778]	train-mlogloss:0.35116	val-mlogloss:0.528988
[779]	train-mlogloss:0.350991	val-mlogloss:0.528979
[780]	train-mlogloss:0.350776	val-mlogloss:0.528937
[781]	train-mlogloss:0.350583	val-mlogloss:0.528897
[782]	train-mlogloss:0.350422	val-mlogloss:0.528897
[783]	train-mlogloss:0.350296	val-mlogloss:0.528904
[784]	train-mlogloss:0.350181	val-mlogloss:0.528908
[785]	train-mlogloss:0.349999	val-mlogloss:0.528879
[786]	train-mlogloss:0.349795	val-mlogloss:0.528867
[787]	train-mlogloss:0.349627	val-mlogloss:0.528849
[788]	train-mlogloss:0.349414	val-mlogloss:0.528836
[789]	train-mlogloss:0.349251	val-mlogloss:0.528805
[790]	train-mlogloss:0.349089	val-mlogloss:0.528765
[791]	train-mlogloss:0.348921	val-mlogloss:0.528772
[792]	train-mlogloss:0.348751	val-mlogloss:0.528777
[793]	train-mlogloss:0.348564	val-mlogloss:0.528793
[794]	train-mlogloss:0.348361	val-mlogloss:0.528788
[795]	train-mlogloss:0.348206	val-mlogloss:0.528809
[796]	train-mlogloss:0.348033	val-mlogloss:0.528786
[797]	train-mlogloss:0.34787	val-mlogloss:0.528823
[798]	train-mlogloss:0.347737	val-mlogloss:0.528791
[799]	train-mlogloss:0.347551	val-mlogloss:0.52881
[800]	train-mlogloss:0.34743	val-mlogloss:0.528813
[801]	train-mlogloss:0.347264	val-mlogloss:0.528811
[802]	train-mlogloss:0.347138	val-mlogloss:0.528777
[803]	train-mlogloss:0.347019	val-mlogloss:0.528774
[804]	train-mlogloss:0.346825	val-mlogloss:0.528787
[805]	train-mlogloss:0.34663	val-mlogloss:0.528737
[806]	train-mlogloss:0.346503	val-mlogloss:0.528727
[807]	train-mlogloss:0.346316	val-mlogloss:0.52872
[808]	train-mlogloss:0.346191	val-mlogloss:0.528726
[809]	train-mlogloss:0.346024	val-mlogloss:0.528706
[810]	train-mlogloss:0.345836	val-mlogloss:0.528699
[811]	train-mlogloss:0.345616	val-mlogloss:0.528612
[812]	train-mlogloss:0.345439	val-mlogloss:0.528596
[813]	train-mlogloss:0.345283	val-mlogloss:0.528573
[814]	train-mlogloss:0.345145	val-mlogloss:0.528532
[815]	train-mlogloss:0.344958	val-mlogloss:0.528482
[816]	train-mlogloss:0.34477	val-mlogloss:0.528454
[817]	train-mlogloss:0.344667	val-mlogloss:0.528448
[818]	train-mlogloss:0.344531	val-mlogloss:0.528431
[819]	train-mlogloss:0.344373	val-mlogloss:0.528408
[820]	train-mlogloss:0.344194	val-mlogloss:0.528392
[821]	train-mlogloss:0.344023	val-mlogloss:0.528379
[822]	train-mlogloss:0.343869	val-mlogloss:0.528384
[823]	train-mlogloss:0.34371	val-mlogloss:0.528379
[824]	train-mlogloss:0.343512	val-mlogloss:0.528381
[825]	train-mlogloss:0.343346	val-mlogloss:0.528383
[826]	train-mlogloss:0.343154	val-mlogloss:0.528392
[827]	train-mlogloss:0.342966	val-mlogloss:0.528369
[828]	train-mlogloss:0.342867	val-mlogloss:0.528349
[829]	train-mlogloss:0.342685	val-mlogloss:0.528317
[830]	train-mlogloss:0.342504	val-mlogloss:0.528287
[831]	train-mlogloss:0.342279	val-mlogloss:0.528262
[832]	train-mlogloss:0.342061	val-mlogloss:0.528248
[833]	train-mlogloss:0.341925	val-mlogloss:0.528251
[834]	train-mlogloss:0.341789	val-mlogloss:0.528211
[835]	train-mlogloss:0.34162	val-mlogloss:0.52824
[836]	train-mlogloss:0.341453	val-mlogloss:0.528242
[837]	train-mlogloss:0.34132	val-mlogloss:0.528236
[838]	train-mlogloss:0.341137	val-mlogloss:0.528233
[839]	train-mlogloss:0.341038	val-mlogloss:0.52822
[840]	train-mlogloss:0.340886	val-mlogloss:0.5282
[841]	train-mlogloss:0.340741	val-mlogloss:0.528193
[842]	train-mlogloss:0.340542	val-mlogloss:0.528191
[843]	train-mlogloss:0.340433	val-mlogloss:0.528205
[844]	train-mlogloss:0.340242	val-mlogloss:0.528183
[845]	train-mlogloss:0.340025	val-mlogloss:0.528178
[846]	train-mlogloss:0.33984	val-mlogloss:0.528193
[847]	train-mlogloss:0.339726	val-mlogloss:0.528201
[848]	train-mlogloss:0.339633	val-mlogloss:0.528213
[849]	train-mlogloss:0.339496	val-mlogloss:0.528221
[850]	train-mlogloss:0.339336	val-mlogloss:0.528196
[851]	train-mlogloss:0.339113	val-mlogloss:0.528193
[852]	train-mlogloss:0.338999	val-mlogloss:0.528235
[853]	train-mlogloss:0.338847	val-mlogloss:0.52823
[854]	train-mlogloss:0.33871	val-mlogloss:0.528245
[855]	train-mlogloss:0.338536	val-mlogloss:0.528242
[856]	train-mlogloss:0.3384	val-mlogloss:0.528234
[857]	train-mlogloss:0.338204	val-mlogloss:0.528248
[858]	train-mlogloss:0.338001	val-mlogloss:0.528251
[859]	train-mlogloss:0.33789	val-mlogloss:0.528248
[860]	train-mlogloss:0.337711	val-mlogloss:0.52826
[861]	train-mlogloss:0.337629	val-mlogloss:0.528258
[862]	train-mlogloss:0.337463	val-mlogloss:0.528267
[863]	train-mlogloss:0.337324	val-mlogloss:0.52825
[864]	train-mlogloss:0.337114	val-mlogloss:0.528242
[865]	train-mlogloss:0.336922	val-mlogloss:0.52824
[866]	train-mlogloss:0.336774	val-mlogloss:0.528262
[867]	train-mlogloss:0.336627	val-mlogloss:0.528242
[868]	train-mlogloss:0.336439	val-mlogloss:0.528233
[869]	train-mlogloss:0.33632	val-mlogloss:0.528225
[870]	train-mlogloss:0.336174	val-mlogloss:0.528191
[871]	train-mlogloss:0.336065	val-mlogloss:0.52818
[872]	train-mlogloss:0.335923	val-mlogloss:0.528193
[873]	train-mlogloss:0.335758	val-mlogloss:0.528174
[874]	train-mlogloss:0.335566	val-mlogloss:0.528174
[875]	train-mlogloss:0.335404	val-mlogloss:0.528176
[876]	train-mlogloss:0.335273	val-mlogloss:0.528156
[877]	train-mlogloss:0.335078	val-mlogloss:0.52816
[878]	train-mlogloss:0.334961	val-mlogloss:0.528162
[879]	train-mlogloss:0.334827	val-mlogloss:0.528187
[880]	train-mlogloss:0.33468	val-mlogloss:0.52816
[881]	train-mlogloss:0.334539	val-mlogloss:0.528167
[882]	train-mlogloss:0.334436	val-mlogloss:0.528148
[883]	train-mlogloss:0.334287	val-mlogloss:0.528145
[884]	train-mlogloss:0.334117	val-mlogloss:0.52817
[885]	train-mlogloss:0.333965	val-mlogloss:0.528191
[886]	train-mlogloss:0.333825	val-mlogloss:0.528194
[887]	train-mlogloss:0.333704	val-mlogloss:0.528238
[888]	train-mlogloss:0.333523	val-mlogloss:0.528183
[889]	train-mlogloss:0.333399	val-mlogloss:0.528182
[890]	train-mlogloss:0.333246	val-mlogloss:0.528184
[891]	train-mlogloss:0.333128	val-mlogloss:0.528163
[892]	train-mlogloss:0.332999	val-mlogloss:0.528165
[893]	train-mlogloss:0.332847	val-mlogloss:0.52816
[894]	train-mlogloss:0.332722	val-mlogloss:0.528153
[895]	train-mlogloss:0.332567	val-mlogloss:0.528141
[896]	train-mlogloss:0.332443	val-mlogloss:0.528144
[897]	train-mlogloss:0.332266	val-mlogloss:0.528142
[898]	train-mlogloss:0.332139	val-mlogloss:0.528152
[899]	train-mlogloss:0.331954	val-mlogloss:0.528156
[900]	train-mlogloss:0.331802	val-mlogloss:0.528159
[901]	train-mlogloss:0.331613	val-mlogloss:0.528143
[902]	train-mlogloss:0.331422	val-mlogloss:0.528133
[903]	train-mlogloss:0.331245	val-mlogloss:0.528124
[904]	train-mlogloss:0.331058	val-mlogloss:0.528107
[905]	train-mlogloss:0.330916	val-mlogloss:0.528114
[906]	train-mlogloss:0.330829	val-mlogloss:0.52812
[907]	train-mlogloss:0.330706	val-mlogloss:0.528104
[908]	train-mlogloss:0.330544	val-mlogloss:0.528068
[909]	train-mlogloss:0.330381	val-mlogloss:0.528077
[910]	train-mlogloss:0.330242	val-mlogloss:0.528057
[911]	train-mlogloss:0.330066	val-mlogloss:0.528069
[912]	train-mlogloss:0.329893	val-mlogloss:0.528045
[913]	train-mlogloss:0.329759	val-mlogloss:0.528064
[914]	train-mlogloss:0.329647	val-mlogloss:0.528071
[915]	train-mlogloss:0.329545	val-mlogloss:0.528085
[916]	train-mlogloss:0.329357	val-mlogloss:0.528074
[917]	train-mlogloss:0.329207	val-mlogloss:0.528063
[918]	train-mlogloss:0.329094	val-mlogloss:0.528086
[919]	train-mlogloss:0.328961	val-mlogloss:0.528106
[920]	train-mlogloss:0.328844	val-mlogloss:0.528068
[921]	train-mlogloss:0.328632	val-mlogloss:0.528104
[922]	train-mlogloss:0.32848	val-mlogloss:0.528151
[923]	train-mlogloss:0.328312	val-mlogloss:0.528097
[924]	train-mlogloss:0.328147	val-mlogloss:0.528034
[925]	train-mlogloss:0.327967	val-mlogloss:0.528044
[926]	train-mlogloss:0.327836	val-mlogloss:0.528063
[927]	train-mlogloss:0.327692	val-mlogloss:0.52805
[928]	train-mlogloss:0.327545	val-mlogloss:0.528045
[929]	train-mlogloss:0.327356	val-mlogloss:0.528053
[930]	train-mlogloss:0.327215	val-mlogloss:0.528033
[931]	train-mlogloss:0.327073	val-mlogloss:0.528029
[932]	train-mlogloss:0.326964	val-mlogloss:0.528046
[933]	train-mlogloss:0.326814	val-mlogloss:0.52806
[934]	train-mlogloss:0.326662	val-mlogloss:0.528055
[935]	train-mlogloss:0.326464	val-mlogloss:0.528039
[936]	train-mlogloss:0.326306	val-mlogloss:0.528041
[937]	train-mlogloss:0.32611	val-mlogloss:0.528025
[938]	train-mlogloss:0.325971	val-mlogloss:0.528027
[939]	train-mlogloss:0.32585	val-mlogloss:0.528053
[940]	train-mlogloss:0.325693	val-mlogloss:0.52808
[941]	train-mlogloss:0.325496	val-mlogloss:0.528036
[942]	train-mlogloss:0.325352	val-mlogloss:0.528007
[943]	train-mlogloss:0.325224	val-mlogloss:0.528002
[944]	train-mlogloss:0.325091	val-mlogloss:0.528047
[945]	train-mlogloss:0.324915	val-mlogloss:0.528096
[946]	train-mlogloss:0.324783	val-mlogloss:0.528074
[947]	train-mlogloss:0.324644	val-mlogloss:0.528126
[948]	train-mlogloss:0.324525	val-mlogloss:0.528118
[949]	train-mlogloss:0.324357	val-mlogloss:0.528098
[950]	train-mlogloss:0.324189	val-mlogloss:0.528099
[951]	train-mlogloss:0.324061	val-mlogloss:0.528106
[952]	train-mlogloss:0.323875	val-mlogloss:0.528109
[953]	train-mlogloss:0.323764	val-mlogloss:0.528082
[954]	train-mlogloss:0.323699	val-mlogloss:0.528068
[955]	train-mlogloss:0.323551	val-mlogloss:0.528051
[956]	train-mlogloss:0.32335	val-mlogloss:0.528063
[957]	train-mlogloss:0.323188	val-mlogloss:0.528073
[958]	train-mlogloss:0.32304	val-mlogloss:0.528051
[959]	train-mlogloss:0.322828	val-mlogloss:0.528056
[960]	train-mlogloss:0.322638	val-mlogloss:0.528066
[961]	train-mlogloss:0.322486	val-mlogloss:0.528053
[962]	train-mlogloss:0.322354	val-mlogloss:0.528039
[963]	train-mlogloss:0.322163	val-mlogloss:0.52804
[964]	train-mlogloss:0.322008	val-mlogloss:0.528058
[965]	train-mlogloss:0.32188	val-mlogloss:0.528069
[966]	train-mlogloss:0.321747	val-mlogloss:0.528035
[967]	train-mlogloss:0.321592	val-mlogloss:0.52801
[968]	train-mlogloss:0.32142	val-mlogloss:0.527992
[969]	train-mlogloss:0.321268	val-mlogloss:0.527983
[970]	train-mlogloss:0.321113	val-mlogloss:0.528005
[971]	train-mlogloss:0.320979	val-mlogloss:0.52799
[972]	train-mlogloss:0.32084	val-mlogloss:0.52797
[973]	train-mlogloss:0.320754	val-mlogloss:0.527985
[974]	train-mlogloss:0.320625	val-mlogloss:0.527998
[975]	train-mlogloss:0.320502	val-mlogloss:0.527975
[976]	train-mlogloss:0.320342	val-mlogloss:0.527982
[977]	train-mlogloss:0.32016	val-mlogloss:0.527975
[978]	train-mlogloss:0.320044	val-mlogloss:0.527969
[979]	train-mlogloss:0.319901	val-mlogloss:0.527954
[980]	train-mlogloss:0.319743	val-mlogloss:0.528009
[981]	train-mlogloss:0.319617	val-mlogloss:0.528004
[982]	train-mlogloss:0.319425	val-mlogloss:0.528063
[983]	train-mlogloss:0.319263	val-mlogloss:0.528066
[984]	train-mlogloss:0.319153	val-mlogloss:0.528061
[985]	train-mlogloss:0.318969	val-mlogloss:0.528075
[986]	train-mlogloss:0.318826	val-mlogloss:0.528066
[987]	train-mlogloss:0.318721	val-mlogloss:0.528064
[988]	train-mlogloss:0.318593	val-mlogloss:0.528105
[989]	train-mlogloss:0.318489	val-mlogloss:0.528081
[990]	train-mlogloss:0.318339	val-mlogloss:0.528087
[991]	train-mlogloss:0.318215	val-mlogloss:0.528056
[992]	train-mlogloss:0.318041	val-mlogloss:0.528052
[993]	train-mlogloss:0.317847	val-mlogloss:0.52803
[994]	train-mlogloss:0.317691	val-mlogloss:0.528032
[995]	train-mlogloss:0.317562	val-mlogloss:0.528032
[996]	train-mlogloss:0.3174	val-mlogloss:0.528038
[997]	train-mlogloss:0.317216	val-mlogloss:0.528041
[998]	train-mlogloss:0.317087	val-mlogloss:0.528029
[999]	train-mlogloss:0.316924	val-mlogloss:0.528023
[1000]	train-mlogloss:0.316755	val-mlogloss:0.528071
[1001]	train-mlogloss:0.316637	val-mlogloss:0.528079
[1002]	train-mlogloss:0.316485	val-mlogloss:0.528094
[1003]	train-mlogloss:0.316314	val-mlogloss:0.528093
[1004]	train-mlogloss:0.316211	val-mlogloss:0.528084
[1005]	train-mlogloss:0.316092	val-mlogloss:0.528104
[1006]	train-mlogloss:0.315957	val-mlogloss:0.528106
[1007]	train-mlogloss:0.315782	val-mlogloss:0.52811
[1008]	train-mlogloss:0.315625	val-mlogloss:0.528115
[1009]	train-mlogloss:0.315469	val-mlogloss:0.528068
[1010]	train-mlogloss:0.315374	val-mlogloss:0.528086
[1011]	train-mlogloss:0.31525	val-mlogloss:0.5281
[1012]	train-mlogloss:0.315127	val-mlogloss:0.52812
[1013]	train-mlogloss:0.314985	val-mlogloss:0.528125
[1014]	train-mlogloss:0.314815	val-mlogloss:0.528174
[1015]	train-mlogloss:0.31463	val-mlogloss:0.528177
[1016]	train-mlogloss:0.314486	val-mlogloss:0.528189
[1017]	train-mlogloss:0.314336	val-mlogloss:0.528167
[1018]	train-mlogloss:0.314189	val-mlogloss:0.528178
[1019]	train-mlogloss:0.314041	val-mlogloss:0.528181
[1020]	train-mlogloss:0.313979	val-mlogloss:0.528181
[1021]	train-mlogloss:0.313818	val-mlogloss:0.528187
[1022]	train-mlogloss:0.313686	val-mlogloss:0.528162
[1023]	train-mlogloss:0.313532	val-mlogloss:0.528133
[1024]	train-mlogloss:0.313365	val-mlogloss:0.528117
[1025]	train-mlogloss:0.313227	val-mlogloss:0.52813
[1026]	train-mlogloss:0.313062	val-mlogloss:0.528102
[1027]	train-mlogloss:0.312919	val-mlogloss:0.528111
[1028]	train-mlogloss:0.312773	val-mlogloss:0.528097
[1029]	train-mlogloss:0.312653	val-mlogloss:0.528098
Stopping. Best iteration:
[979]	train-mlogloss:0.319901	val-mlogloss:0.527954

[0]	train-mlogloss:1.07767	val-mlogloss:1.07815
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.

Will train until val-mlogloss hasn't improved in 50 rounds.
[1]	train-mlogloss:1.05806	val-mlogloss:1.05906
[2]	train-mlogloss:1.03919	val-mlogloss:1.04071
[3]	train-mlogloss:1.02124	val-mlogloss:1.02323
[4]	train-mlogloss:1.00398	val-mlogloss:1.00646
[5]	train-mlogloss:0.98748	val-mlogloss:0.990486
[6]	train-mlogloss:0.971963	val-mlogloss:0.975414
[7]	train-mlogloss:0.956857	val-mlogloss:0.960818
[8]	train-mlogloss:0.942506	val-mlogloss:0.946983
[9]	train-mlogloss:0.928764	val-mlogloss:0.933616
[10]	train-mlogloss:0.915592	val-mlogloss:0.920944
[11]	train-mlogloss:0.902997	val-mlogloss:0.908762
[12]	train-mlogloss:0.890779	val-mlogloss:0.897061
[13]	train-mlogloss:0.879202	val-mlogloss:0.885924
[14]	train-mlogloss:0.868047	val-mlogloss:0.875236
[15]	train-mlogloss:0.857392	val-mlogloss:0.865048
[16]	train-mlogloss:0.847187	val-mlogloss:0.855252
[17]	train-mlogloss:0.837292	val-mlogloss:0.845799
[18]	train-mlogloss:0.827776	val-mlogloss:0.836699
[19]	train-mlogloss:0.818744	val-mlogloss:0.828045
[20]	train-mlogloss:0.809986	val-mlogloss:0.819765
[21]	train-mlogloss:0.801495	val-mlogloss:0.81174
[22]	train-mlogloss:0.793204	val-mlogloss:0.803835
[23]	train-mlogloss:0.785279	val-mlogloss:0.796255
[24]	train-mlogloss:0.777775	val-mlogloss:0.789106
[25]	train-mlogloss:0.770446	val-mlogloss:0.782169
[26]	train-mlogloss:0.763309	val-mlogloss:0.775468
[27]	train-mlogloss:0.756385	val-mlogloss:0.768883
[28]	train-mlogloss:0.749686	val-mlogloss:0.762523
[29]	train-mlogloss:0.743241	val-mlogloss:0.756435
[30]	train-mlogloss:0.737042	val-mlogloss:0.750627
[31]	train-mlogloss:0.731035	val-mlogloss:0.744944
[32]	train-mlogloss:0.725258	val-mlogloss:0.739431
[33]	train-mlogloss:0.719628	val-mlogloss:0.734157
[34]	train-mlogloss:0.714163	val-mlogloss:0.729121
[35]	train-mlogloss:0.70897	val-mlogloss:0.724241
[36]	train-mlogloss:0.703931	val-mlogloss:0.719499
[37]	train-mlogloss:0.699056	val-mlogloss:0.714974
[38]	train-mlogloss:0.69434	val-mlogloss:0.710612
[39]	train-mlogloss:0.689778	val-mlogloss:0.706456
[40]	train-mlogloss:0.685391	val-mlogloss:0.702464
[41]	train-mlogloss:0.681112	val-mlogloss:0.698499
[42]	train-mlogloss:0.676935	val-mlogloss:0.694608
[43]	train-mlogloss:0.672866	val-mlogloss:0.690916
[44]	train-mlogloss:0.668868	val-mlogloss:0.687209
[45]	train-mlogloss:0.665094	val-mlogloss:0.683743
[46]	train-mlogloss:0.661528	val-mlogloss:0.680504
[47]	train-mlogloss:0.657986	val-mlogloss:0.677262
[48]	train-mlogloss:0.654498	val-mlogloss:0.674131
[49]	train-mlogloss:0.651113	val-mlogloss:0.671064
[50]	train-mlogloss:0.647764	val-mlogloss:0.668076
[51]	train-mlogloss:0.644517	val-mlogloss:0.665133
[52]	train-mlogloss:0.641423	val-mlogloss:0.662362
[53]	train-mlogloss:0.638415	val-mlogloss:0.659639
[54]	train-mlogloss:0.635412	val-mlogloss:0.656943
[55]	train-mlogloss:0.632558	val-mlogloss:0.654403
[56]	train-mlogloss:0.629715	val-mlogloss:0.651872
[57]	train-mlogloss:0.627058	val-mlogloss:0.649485
[58]	train-mlogloss:0.624439	val-mlogloss:0.647258
[59]	train-mlogloss:0.621903	val-mlogloss:0.644979
[60]	train-mlogloss:0.619328	val-mlogloss:0.642668
[61]	train-mlogloss:0.616914	val-mlogloss:0.640631
[62]	train-mlogloss:0.614496	val-mlogloss:0.63858
[63]	train-mlogloss:0.61213	val-mlogloss:0.636518
[64]	train-mlogloss:0.609794	val-mlogloss:0.634594
[65]	train-mlogloss:0.607601	val-mlogloss:0.632729
[66]	train-mlogloss:0.605494	val-mlogloss:0.630907
[67]	train-mlogloss:0.60348	val-mlogloss:0.629151
[68]	train-mlogloss:0.60144	val-mlogloss:0.627415
[69]	train-mlogloss:0.599463	val-mlogloss:0.625695
[70]	train-mlogloss:0.597528	val-mlogloss:0.6241
[71]	train-mlogloss:0.595494	val-mlogloss:0.62234
[72]	train-mlogloss:0.593742	val-mlogloss:0.620837
[73]	train-mlogloss:0.592017	val-mlogloss:0.619328
[74]	train-mlogloss:0.590297	val-mlogloss:0.617895
[75]	train-mlogloss:0.588526	val-mlogloss:0.616409
[76]	train-mlogloss:0.586758	val-mlogloss:0.614931
[77]	train-mlogloss:0.58496	val-mlogloss:0.613435
[78]	train-mlogloss:0.583421	val-mlogloss:0.612149
[79]	train-mlogloss:0.581844	val-mlogloss:0.610835
[80]	train-mlogloss:0.58026	val-mlogloss:0.609544
[81]	train-mlogloss:0.578775	val-mlogloss:0.6083
[82]	train-mlogloss:0.577323	val-mlogloss:0.607069
[83]	train-mlogloss:0.575818	val-mlogloss:0.605839
[84]	train-mlogloss:0.574429	val-mlogloss:0.604657
[85]	train-mlogloss:0.572949	val-mlogloss:0.603544
[86]	train-mlogloss:0.571471	val-mlogloss:0.602339
[87]	train-mlogloss:0.570155	val-mlogloss:0.601325
[88]	train-mlogloss:0.568867	val-mlogloss:0.60024
[89]	train-mlogloss:0.567562	val-mlogloss:0.599195
[90]	train-mlogloss:0.566243	val-mlogloss:0.59823
[91]	train-mlogloss:0.564992	val-mlogloss:0.597289
[92]	train-mlogloss:0.563815	val-mlogloss:0.596393
[93]	train-mlogloss:0.562543	val-mlogloss:0.59543
[94]	train-mlogloss:0.561272	val-mlogloss:0.594499
[95]	train-mlogloss:0.560079	val-mlogloss:0.593686
[96]	train-mlogloss:0.558994	val-mlogloss:0.592837
[97]	train-mlogloss:0.557875	val-mlogloss:0.592001
[98]	train-mlogloss:0.556803	val-mlogloss:0.591204
[99]	train-mlogloss:0.555788	val-mlogloss:0.590443
[100]	train-mlogloss:0.554809	val-mlogloss:0.589634
[101]	train-mlogloss:0.553729	val-mlogloss:0.588775
[102]	train-mlogloss:0.552647	val-mlogloss:0.587944
[103]	train-mlogloss:0.551673	val-mlogloss:0.587218
[104]	train-mlogloss:0.550573	val-mlogloss:0.586405
[105]	train-mlogloss:0.549562	val-mlogloss:0.585682
[106]	train-mlogloss:0.548655	val-mlogloss:0.584953
[107]	train-mlogloss:0.54765	val-mlogloss:0.584282
[108]	train-mlogloss:0.546796	val-mlogloss:0.583678
[109]	train-mlogloss:0.545857	val-mlogloss:0.583023
[110]	train-mlogloss:0.544953	val-mlogloss:0.582363
[111]	train-mlogloss:0.544075	val-mlogloss:0.581778
[112]	train-mlogloss:0.543233	val-mlogloss:0.581131
[113]	train-mlogloss:0.542374	val-mlogloss:0.580529
[114]	train-mlogloss:0.541509	val-mlogloss:0.579951
[115]	train-mlogloss:0.540777	val-mlogloss:0.579437
[116]	train-mlogloss:0.539953	val-mlogloss:0.57883
[117]	train-mlogloss:0.539093	val-mlogloss:0.578232
[118]	train-mlogloss:0.538292	val-mlogloss:0.57765
[119]	train-mlogloss:0.537557	val-mlogloss:0.577149
[120]	train-mlogloss:0.536739	val-mlogloss:0.576564
[121]	train-mlogloss:0.535946	val-mlogloss:0.576075
[122]	train-mlogloss:0.535196	val-mlogloss:0.57553
[123]	train-mlogloss:0.534537	val-mlogloss:0.575127
[124]	train-mlogloss:0.533821	val-mlogloss:0.574629
[125]	train-mlogloss:0.533063	val-mlogloss:0.574081
[126]	train-mlogloss:0.532257	val-mlogloss:0.573573
[127]	train-mlogloss:0.531512	val-mlogloss:0.573085
[128]	train-mlogloss:0.530777	val-mlogloss:0.572621
[129]	train-mlogloss:0.530136	val-mlogloss:0.572178
[130]	train-mlogloss:0.529433	val-mlogloss:0.571681
[131]	train-mlogloss:0.528791	val-mlogloss:0.571233
[132]	train-mlogloss:0.52808	val-mlogloss:0.570762
[133]	train-mlogloss:0.527417	val-mlogloss:0.570344
[134]	train-mlogloss:0.526735	val-mlogloss:0.569915
[135]	train-mlogloss:0.526088	val-mlogloss:0.5695
[136]	train-mlogloss:0.525442	val-mlogloss:0.56907
[137]	train-mlogloss:0.524697	val-mlogloss:0.568608
[138]	train-mlogloss:0.524135	val-mlogloss:0.568235
[139]	train-mlogloss:0.523564	val-mlogloss:0.567874
[140]	train-mlogloss:0.522842	val-mlogloss:0.567508
[141]	train-mlogloss:0.522122	val-mlogloss:0.567084
[142]	train-mlogloss:0.521474	val-mlogloss:0.56662
[143]	train-mlogloss:0.520901	val-mlogloss:0.566315
[144]	train-mlogloss:0.52028	val-mlogloss:0.565951
[145]	train-mlogloss:0.519701	val-mlogloss:0.565626
[146]	train-mlogloss:0.519033	val-mlogloss:0.565245
[147]	train-mlogloss:0.518369	val-mlogloss:0.564881
[148]	train-mlogloss:0.517848	val-mlogloss:0.564599
[149]	train-mlogloss:0.517299	val-mlogloss:0.56433
[150]	train-mlogloss:0.516723	val-mlogloss:0.563932
[151]	train-mlogloss:0.516091	val-mlogloss:0.563622
[152]	train-mlogloss:0.515667	val-mlogloss:0.563361
[153]	train-mlogloss:0.515133	val-mlogloss:0.563068
[154]	train-mlogloss:0.514561	val-mlogloss:0.562739
[155]	train-mlogloss:0.514037	val-mlogloss:0.562468
[156]	train-mlogloss:0.513465	val-mlogloss:0.562104
[157]	train-mlogloss:0.512977	val-mlogloss:0.561833
[158]	train-mlogloss:0.512373	val-mlogloss:0.561432
[159]	train-mlogloss:0.511905	val-mlogloss:0.56119
[160]	train-mlogloss:0.511424	val-mlogloss:0.56088
[161]	train-mlogloss:0.510979	val-mlogloss:0.560604
[162]	train-mlogloss:0.51043	val-mlogloss:0.56025
[163]	train-mlogloss:0.509769	val-mlogloss:0.559945
[164]	train-mlogloss:0.509201	val-mlogloss:0.559641
[165]	train-mlogloss:0.508617	val-mlogloss:0.559299
[166]	train-mlogloss:0.507982	val-mlogloss:0.558997
[167]	train-mlogloss:0.507494	val-mlogloss:0.558754
[168]	train-mlogloss:0.507006	val-mlogloss:0.558476
[169]	train-mlogloss:0.50643	val-mlogloss:0.558216
[170]	train-mlogloss:0.506028	val-mlogloss:0.558002
[171]	train-mlogloss:0.50558	val-mlogloss:0.557705
[172]	train-mlogloss:0.505039	val-mlogloss:0.557439
[173]	train-mlogloss:0.504625	val-mlogloss:0.557266
[174]	train-mlogloss:0.50403	val-mlogloss:0.55693
[175]	train-mlogloss:0.503614	val-mlogloss:0.556706
[176]	train-mlogloss:0.503085	val-mlogloss:0.556505
[177]	train-mlogloss:0.502667	val-mlogloss:0.556297
[178]	train-mlogloss:0.502212	val-mlogloss:0.556061
[179]	train-mlogloss:0.501746	val-mlogloss:0.555826
[180]	train-mlogloss:0.501284	val-mlogloss:0.555571
[181]	train-mlogloss:0.500828	val-mlogloss:0.555331
[182]	train-mlogloss:0.500242	val-mlogloss:0.555066
[183]	train-mlogloss:0.499693	val-mlogloss:0.554826
[184]	train-mlogloss:0.499265	val-mlogloss:0.554644
[185]	train-mlogloss:0.498726	val-mlogloss:0.554401
[186]	train-mlogloss:0.498247	val-mlogloss:0.554262
[187]	train-mlogloss:0.497891	val-mlogloss:0.554068
[188]	train-mlogloss:0.497499	val-mlogloss:0.553885
[189]	train-mlogloss:0.497025	val-mlogloss:0.553749
[190]	train-mlogloss:0.496606	val-mlogloss:0.553532
[191]	train-mlogloss:0.496172	val-mlogloss:0.553326
[192]	train-mlogloss:0.49577	val-mlogloss:0.553148
[193]	train-mlogloss:0.495293	val-mlogloss:0.55293
[194]	train-mlogloss:0.494807	val-mlogloss:0.552675
[195]	train-mlogloss:0.494313	val-mlogloss:0.552406
[196]	train-mlogloss:0.493812	val-mlogloss:0.552239
[197]	train-mlogloss:0.493343	val-mlogloss:0.552014
[198]	train-mlogloss:0.492854	val-mlogloss:0.551783
[199]	train-mlogloss:0.49238	val-mlogloss:0.551532
[200]	train-mlogloss:0.491947	val-mlogloss:0.551279
[201]	train-mlogloss:0.491539	val-mlogloss:0.551109
[202]	train-mlogloss:0.491142	val-mlogloss:0.550961
[203]	train-mlogloss:0.490689	val-mlogloss:0.550759
[204]	train-mlogloss:0.490216	val-mlogloss:0.550544
[205]	train-mlogloss:0.4899	val-mlogloss:0.550379
[206]	train-mlogloss:0.489425	val-mlogloss:0.550192
[207]	train-mlogloss:0.488907	val-mlogloss:0.549986
[208]	train-mlogloss:0.488469	val-mlogloss:0.549779
[209]	train-mlogloss:0.487959	val-mlogloss:0.549601
[210]	train-mlogloss:0.487405	val-mlogloss:0.549403
[211]	train-mlogloss:0.486923	val-mlogloss:0.549193
[212]	train-mlogloss:0.486409	val-mlogloss:0.549013
[213]	train-mlogloss:0.485953	val-mlogloss:0.54879
[214]	train-mlogloss:0.485526	val-mlogloss:0.54861
[215]	train-mlogloss:0.485123	val-mlogloss:0.548372
[216]	train-mlogloss:0.484794	val-mlogloss:0.548204
[217]	train-mlogloss:0.484324	val-mlogloss:0.5481
[218]	train-mlogloss:0.483943	val-mlogloss:0.547947
[219]	train-mlogloss:0.483581	val-mlogloss:0.547802
[220]	train-mlogloss:0.483136	val-mlogloss:0.547618
[221]	train-mlogloss:0.482736	val-mlogloss:0.547448
[222]	train-mlogloss:0.482312	val-mlogloss:0.547282
[223]	train-mlogloss:0.481934	val-mlogloss:0.547094
[224]	train-mlogloss:0.481472	val-mlogloss:0.546881
[225]	train-mlogloss:0.481121	val-mlogloss:0.546726
[226]	train-mlogloss:0.480801	val-mlogloss:0.546637
[227]	train-mlogloss:0.480451	val-mlogloss:0.54648
[228]	train-mlogloss:0.480036	val-mlogloss:0.546307
[229]	train-mlogloss:0.479635	val-mlogloss:0.546113
[230]	train-mlogloss:0.479281	val-mlogloss:0.545943
[231]	train-mlogloss:0.478961	val-mlogloss:0.545853
[232]	train-mlogloss:0.478499	val-mlogloss:0.545663
[233]	train-mlogloss:0.478084	val-mlogloss:0.545485
[234]	train-mlogloss:0.477806	val-mlogloss:0.545372
[235]	train-mlogloss:0.477408	val-mlogloss:0.545218
[236]	train-mlogloss:0.477135	val-mlogloss:0.545081
[237]	train-mlogloss:0.476782	val-mlogloss:0.545005
[238]	train-mlogloss:0.47651	val-mlogloss:0.5449
[239]	train-mlogloss:0.476029	val-mlogloss:0.544745
[240]	train-mlogloss:0.475534	val-mlogloss:0.544487
[241]	train-mlogloss:0.475149	val-mlogloss:0.544384
[242]	train-mlogloss:0.474743	val-mlogloss:0.544262
[243]	train-mlogloss:0.474422	val-mlogloss:0.544098
[244]	train-mlogloss:0.474104	val-mlogloss:0.543949
[245]	train-mlogloss:0.473757	val-mlogloss:0.543814
[246]	train-mlogloss:0.473511	val-mlogloss:0.543704
[247]	train-mlogloss:0.473159	val-mlogloss:0.543562
[248]	train-mlogloss:0.47282	val-mlogloss:0.543421
[249]	train-mlogloss:0.472569	val-mlogloss:0.543301
[250]	train-mlogloss:0.47217	val-mlogloss:0.543142
[251]	train-mlogloss:0.471891	val-mlogloss:0.543016
[252]	train-mlogloss:0.471504	val-mlogloss:0.542835
[253]	train-mlogloss:0.47116	val-mlogloss:0.542758
[254]	train-mlogloss:0.47076	val-mlogloss:0.542696
[255]	train-mlogloss:0.470429	val-mlogloss:0.542617
[256]	train-mlogloss:0.470111	val-mlogloss:0.542518
[257]	train-mlogloss:0.469745	val-mlogloss:0.542371
[258]	train-mlogloss:0.469288	val-mlogloss:0.542236
[259]	train-mlogloss:0.469051	val-mlogloss:0.542189
[260]	train-mlogloss:0.468827	val-mlogloss:0.542053
[261]	train-mlogloss:0.468372	val-mlogloss:0.541953
[262]	train-mlogloss:0.46806	val-mlogloss:0.541791
[263]	train-mlogloss:0.467695	val-mlogloss:0.541671
[264]	train-mlogloss:0.467383	val-mlogloss:0.541569
[265]	train-mlogloss:0.46703	val-mlogloss:0.541417
[266]	train-mlogloss:0.466688	val-mlogloss:0.541303
[267]	train-mlogloss:0.46641	val-mlogloss:0.541197
[268]	train-mlogloss:0.465968	val-mlogloss:0.541048
[269]	train-mlogloss:0.465522	val-mlogloss:0.540949
[270]	train-mlogloss:0.46522	val-mlogloss:0.540847
[271]	train-mlogloss:0.464956	val-mlogloss:0.540763
[272]	train-mlogloss:0.464636	val-mlogloss:0.540664
[273]	train-mlogloss:0.464301	val-mlogloss:0.540528
[274]	train-mlogloss:0.464045	val-mlogloss:0.540419
[275]	train-mlogloss:0.463671	val-mlogloss:0.540317
[276]	train-mlogloss:0.463332	val-mlogloss:0.540163
[277]	train-mlogloss:0.46299	val-mlogloss:0.540052
[278]	train-mlogloss:0.4627	val-mlogloss:0.539937
[279]	train-mlogloss:0.462353	val-mlogloss:0.539816
[280]	train-mlogloss:0.462046	val-mlogloss:0.539741
[281]	train-mlogloss:0.461688	val-mlogloss:0.539651
[282]	train-mlogloss:0.461349	val-mlogloss:0.539563
[283]	train-mlogloss:0.461033	val-mlogloss:0.539398
[284]	train-mlogloss:0.460726	val-mlogloss:0.539258
[285]	train-mlogloss:0.460405	val-mlogloss:0.539147
[286]	train-mlogloss:0.460032	val-mlogloss:0.539063
[287]	train-mlogloss:0.459708	val-mlogloss:0.538924
[288]	train-mlogloss:0.459519	val-mlogloss:0.538871
[289]	train-mlogloss:0.459281	val-mlogloss:0.538793
[290]	train-mlogloss:0.459028	val-mlogloss:0.538701
[291]	train-mlogloss:0.458677	val-mlogloss:0.538576
[292]	train-mlogloss:0.458301	val-mlogloss:0.538501
[293]	train-mlogloss:0.457973	val-mlogloss:0.53845
[294]	train-mlogloss:0.457695	val-mlogloss:0.538353
[295]	train-mlogloss:0.45734	val-mlogloss:0.538258
[296]	train-mlogloss:0.457096	val-mlogloss:0.538174
[297]	train-mlogloss:0.456834	val-mlogloss:0.538076
[298]	train-mlogloss:0.4565	val-mlogloss:0.537986
[299]	train-mlogloss:0.456228	val-mlogloss:0.537919
[300]	train-mlogloss:0.455911	val-mlogloss:0.537781
[301]	train-mlogloss:0.455673	val-mlogloss:0.537717
[302]	train-mlogloss:0.4554	val-mlogloss:0.537656
[303]	train-mlogloss:0.455148	val-mlogloss:0.537583
[304]	train-mlogloss:0.454791	val-mlogloss:0.537508
[305]	train-mlogloss:0.454547	val-mlogloss:0.537425
[306]	train-mlogloss:0.45431	val-mlogloss:0.537303
[307]	train-mlogloss:0.454014	val-mlogloss:0.537185
[308]	train-mlogloss:0.453725	val-mlogloss:0.537108
[309]	train-mlogloss:0.45346	val-mlogloss:0.537061
[310]	train-mlogloss:0.453177	val-mlogloss:0.536998
[311]	train-mlogloss:0.452801	val-mlogloss:0.536962
[312]	train-mlogloss:0.452475	val-mlogloss:0.53689
[313]	train-mlogloss:0.452256	val-mlogloss:0.536762
[314]	train-mlogloss:0.451937	val-mlogloss:0.536755
[315]	train-mlogloss:0.451657	val-mlogloss:0.536693
[316]	train-mlogloss:0.451404	val-mlogloss:0.536627
[317]	train-mlogloss:0.45112	val-mlogloss:0.536495
[318]	train-mlogloss:0.450777	val-mlogloss:0.536438
[319]	train-mlogloss:0.45052	val-mlogloss:0.536394
[320]	train-mlogloss:0.450175	val-mlogloss:0.536314
[321]	train-mlogloss:0.449811	val-mlogloss:0.536254
[322]	train-mlogloss:0.44945	val-mlogloss:0.536173
[323]	train-mlogloss:0.449141	val-mlogloss:0.53607
[324]	train-mlogloss:0.448949	val-mlogloss:0.536006
[325]	train-mlogloss:0.448686	val-mlogloss:0.535965
[326]	train-mlogloss:0.448388	val-mlogloss:0.535911
[327]	train-mlogloss:0.448125	val-mlogloss:0.535868
[328]	train-mlogloss:0.447875	val-mlogloss:0.535796
[329]	train-mlogloss:0.447545	val-mlogloss:0.535744
[330]	train-mlogloss:0.447256	val-mlogloss:0.535677
[331]	train-mlogloss:0.447038	val-mlogloss:0.535581
[332]	train-mlogloss:0.446788	val-mlogloss:0.535494
[333]	train-mlogloss:0.446483	val-mlogloss:0.535435
[334]	train-mlogloss:0.446189	val-mlogloss:0.535344
[335]	train-mlogloss:0.445827	val-mlogloss:0.535233
[336]	train-mlogloss:0.445634	val-mlogloss:0.53516
[337]	train-mlogloss:0.445355	val-mlogloss:0.535104
[338]	train-mlogloss:0.445139	val-mlogloss:0.535077
[339]	train-mlogloss:0.444872	val-mlogloss:0.534979
[340]	train-mlogloss:0.44467	val-mlogloss:0.534923
[341]	train-mlogloss:0.444402	val-mlogloss:0.534851
[342]	train-mlogloss:0.444112	val-mlogloss:0.534799
[343]	train-mlogloss:0.443911	val-mlogloss:0.534759
[344]	train-mlogloss:0.443553	val-mlogloss:0.534703
[345]	train-mlogloss:0.443168	val-mlogloss:0.5346
[346]	train-mlogloss:0.442881	val-mlogloss:0.534554
[347]	train-mlogloss:0.442604	val-mlogloss:0.534467
[348]	train-mlogloss:0.442397	val-mlogloss:0.534426
[349]	train-mlogloss:0.442104	val-mlogloss:0.534364
[350]	train-mlogloss:0.441928	val-mlogloss:0.534326
[351]	train-mlogloss:0.44169	val-mlogloss:0.534294
[352]	train-mlogloss:0.441412	val-mlogloss:0.534208
[353]	train-mlogloss:0.441195	val-mlogloss:0.534156
[354]	train-mlogloss:0.440852	val-mlogloss:0.534089
[355]	train-mlogloss:0.44048	val-mlogloss:0.534007
[356]	train-mlogloss:0.440156	val-mlogloss:0.533904
[357]	train-mlogloss:0.439938	val-mlogloss:0.533855
[358]	train-mlogloss:0.439626	val-mlogloss:0.533768
[359]	train-mlogloss:0.439324	val-mlogloss:0.533706
[360]	train-mlogloss:0.43915	val-mlogloss:0.533637
[361]	train-mlogloss:0.438899	val-mlogloss:0.533534
[362]	train-mlogloss:0.438667	val-mlogloss:0.533484
[363]	train-mlogloss:0.438401	val-mlogloss:0.533448
[364]	train-mlogloss:0.438171	val-mlogloss:0.533382
[365]	train-mlogloss:0.437953	val-mlogloss:0.533315
[366]	train-mlogloss:0.437738	val-mlogloss:0.533234
[367]	train-mlogloss:0.437415	val-mlogloss:0.533167
[368]	train-mlogloss:0.437134	val-mlogloss:0.533108
[369]	train-mlogloss:0.436856	val-mlogloss:0.53303
[370]	train-mlogloss:0.436504	val-mlogloss:0.532935
[371]	train-mlogloss:0.436277	val-mlogloss:0.532893
[372]	train-mlogloss:0.435972	val-mlogloss:0.532843
[373]	train-mlogloss:0.43573	val-mlogloss:0.532743
[374]	train-mlogloss:0.4355	val-mlogloss:0.532699
[375]	train-mlogloss:0.435186	val-mlogloss:0.532648
[376]	train-mlogloss:0.43492	val-mlogloss:0.532579
[377]	train-mlogloss:0.434634	val-mlogloss:0.532519
[378]	train-mlogloss:0.434385	val-mlogloss:0.532496
[379]	train-mlogloss:0.434146	val-mlogloss:0.532429
[380]	train-mlogloss:0.433854	val-mlogloss:0.532369
[381]	train-mlogloss:0.433538	val-mlogloss:0.532287
[382]	train-mlogloss:0.433217	val-mlogloss:0.532279
[383]	train-mlogloss:0.432912	val-mlogloss:0.532197
[384]	train-mlogloss:0.432665	val-mlogloss:0.532171
[385]	train-mlogloss:0.432465	val-mlogloss:0.532116
[386]	train-mlogloss:0.432106	val-mlogloss:0.532078
[387]	train-mlogloss:0.431827	val-mlogloss:0.532026
[388]	train-mlogloss:0.43152	val-mlogloss:0.531968
[389]	train-mlogloss:0.431253	val-mlogloss:0.531898
[390]	train-mlogloss:0.431056	val-mlogloss:0.531877
[391]	train-mlogloss:0.430725	val-mlogloss:0.531824
[392]	train-mlogloss:0.430478	val-mlogloss:0.531772
[393]	train-mlogloss:0.430209	val-mlogloss:0.531741
[394]	train-mlogloss:0.42998	val-mlogloss:0.531694
[395]	train-mlogloss:0.42979	val-mlogloss:0.531695
[396]	train-mlogloss:0.429584	val-mlogloss:0.531632
[397]	train-mlogloss:0.42928	val-mlogloss:0.531524
[398]	train-mlogloss:0.429046	val-mlogloss:0.53143
[399]	train-mlogloss:0.428856	val-mlogloss:0.531385
[400]	train-mlogloss:0.428683	val-mlogloss:0.531349
[401]	train-mlogloss:0.42842	val-mlogloss:0.531314
[402]	train-mlogloss:0.428193	val-mlogloss:0.531309
[403]	train-mlogloss:0.427925	val-mlogloss:0.531224
[404]	train-mlogloss:0.427748	val-mlogloss:0.531197
[405]	train-mlogloss:0.427477	val-mlogloss:0.531145
[406]	train-mlogloss:0.427241	val-mlogloss:0.531061
[407]	train-mlogloss:0.427014	val-mlogloss:0.530999
[408]	train-mlogloss:0.426737	val-mlogloss:0.530951
[409]	train-mlogloss:0.42643	val-mlogloss:0.530932
[410]	train-mlogloss:0.426211	val-mlogloss:0.530857
[411]	train-mlogloss:0.426	val-mlogloss:0.530803
[412]	train-mlogloss:0.425764	val-mlogloss:0.530812
[413]	train-mlogloss:0.425485	val-mlogloss:0.530803
[414]	train-mlogloss:0.425221	val-mlogloss:0.530776
[415]	train-mlogloss:0.424929	val-mlogloss:0.530724
[416]	train-mlogloss:0.424643	val-mlogloss:0.530668
[417]	train-mlogloss:0.424395	val-mlogloss:0.530638
[418]	train-mlogloss:0.424114	val-mlogloss:0.530589
[419]	train-mlogloss:0.423875	val-mlogloss:0.530557
[420]	train-mlogloss:0.423611	val-mlogloss:0.530491
[421]	train-mlogloss:0.423391	val-mlogloss:0.530428
[422]	train-mlogloss:0.423179	val-mlogloss:0.530417
[423]	train-mlogloss:0.422859	val-mlogloss:0.530356
[424]	train-mlogloss:0.42265	val-mlogloss:0.53039
[425]	train-mlogloss:0.42245	val-mlogloss:0.530396
[426]	train-mlogloss:0.422167	val-mlogloss:0.530328
[427]	train-mlogloss:0.421945	val-mlogloss:0.53029
[428]	train-mlogloss:0.421699	val-mlogloss:0.530295
[429]	train-mlogloss:0.42149	val-mlogloss:0.530325
[430]	train-mlogloss:0.421315	val-mlogloss:0.530313
[431]	train-mlogloss:0.421081	val-mlogloss:0.530257
[432]	train-mlogloss:0.42085	val-mlogloss:0.530195
[433]	train-mlogloss:0.420592	val-mlogloss:0.530146
[434]	train-mlogloss:0.420322	val-mlogloss:0.530138
[435]	train-mlogloss:0.420116	val-mlogloss:0.530118
[436]	train-mlogloss:0.419895	val-mlogloss:0.53007
[437]	train-mlogloss:0.419656	val-mlogloss:0.530053
[438]	train-mlogloss:0.419466	val-mlogloss:0.529988
[439]	train-mlogloss:0.419183	val-mlogloss:0.529971
[440]	train-mlogloss:0.418965	val-mlogloss:0.529948
[441]	train-mlogloss:0.418652	val-mlogloss:0.52995
[442]	train-mlogloss:0.418421	val-mlogloss:0.529898
[443]	train-mlogloss:0.418236	val-mlogloss:0.529876
[444]	train-mlogloss:0.418045	val-mlogloss:0.529858
[445]	train-mlogloss:0.41777	val-mlogloss:0.529825
[446]	train-mlogloss:0.417617	val-mlogloss:0.529808
[447]	train-mlogloss:0.417418	val-mlogloss:0.529752
[448]	train-mlogloss:0.417104	val-mlogloss:0.529708
[449]	train-mlogloss:0.416898	val-mlogloss:0.529654
[450]	train-mlogloss:0.416555	val-mlogloss:0.529603
[451]	train-mlogloss:0.416242	val-mlogloss:0.529608
[452]	train-mlogloss:0.415985	val-mlogloss:0.529566
[453]	train-mlogloss:0.41573	val-mlogloss:0.529567
[454]	train-mlogloss:0.415446	val-mlogloss:0.529488
[455]	train-mlogloss:0.415187	val-mlogloss:0.529426
[456]	train-mlogloss:0.414973	val-mlogloss:0.529409
[457]	train-mlogloss:0.414722	val-mlogloss:0.529379
[458]	train-mlogloss:0.414498	val-mlogloss:0.529347
[459]	train-mlogloss:0.414288	val-mlogloss:0.529301
[460]	train-mlogloss:0.414083	val-mlogloss:0.529275
[461]	train-mlogloss:0.413868	val-mlogloss:0.529211
[462]	train-mlogloss:0.413689	val-mlogloss:0.529174
[463]	train-mlogloss:0.41341	val-mlogloss:0.529116
[464]	train-mlogloss:0.413241	val-mlogloss:0.529088
[465]	train-mlogloss:0.412978	val-mlogloss:0.529084
[466]	train-mlogloss:0.412743	val-mlogloss:0.52907
[467]	train-mlogloss:0.412511	val-mlogloss:0.528991
[468]	train-mlogloss:0.412349	val-mlogloss:0.528974
[469]	train-mlogloss:0.412121	val-mlogloss:0.528982
[470]	train-mlogloss:0.411887	val-mlogloss:0.528972
[471]	train-mlogloss:0.411673	val-mlogloss:0.528969
[472]	train-mlogloss:0.411471	val-mlogloss:0.528946
[473]	train-mlogloss:0.411297	val-mlogloss:0.528954
[474]	train-mlogloss:0.411066	val-mlogloss:0.52893
[475]	train-mlogloss:0.410841	val-mlogloss:0.528894
[476]	train-mlogloss:0.41059	val-mlogloss:0.528882
[477]	train-mlogloss:0.410415	val-mlogloss:0.528834
[478]	train-mlogloss:0.410155	val-mlogloss:0.528776
[479]	train-mlogloss:0.409929	val-mlogloss:0.528759
[480]	train-mlogloss:0.409746	val-mlogloss:0.528743
[481]	train-mlogloss:0.409562	val-mlogloss:0.528698
[482]	train-mlogloss:0.409351	val-mlogloss:0.52869
[483]	train-mlogloss:0.409104	val-mlogloss:0.528662
[484]	train-mlogloss:0.408882	val-mlogloss:0.528625
[485]	train-mlogloss:0.408685	val-mlogloss:0.528595
[486]	train-mlogloss:0.408491	val-mlogloss:0.528585
[487]	train-mlogloss:0.408216	val-mlogloss:0.528578
[488]	train-mlogloss:0.408085	val-mlogloss:0.528576
[489]	train-mlogloss:0.407798	val-mlogloss:0.528611
[490]	train-mlogloss:0.40755	val-mlogloss:0.528598
[491]	train-mlogloss:0.407273	val-mlogloss:0.528553
[492]	train-mlogloss:0.406987	val-mlogloss:0.528504
[493]	train-mlogloss:0.406744	val-mlogloss:0.52849
[494]	train-mlogloss:0.406534	val-mlogloss:0.528486
[495]	train-mlogloss:0.406293	val-mlogloss:0.528428
[496]	train-mlogloss:0.406068	val-mlogloss:0.528394
[497]	train-mlogloss:0.405844	val-mlogloss:0.528336
[498]	train-mlogloss:0.405582	val-mlogloss:0.528255
[499]	train-mlogloss:0.405353	val-mlogloss:0.528168
[500]	train-mlogloss:0.405114	val-mlogloss:0.528138
[501]	train-mlogloss:0.40481	val-mlogloss:0.528106
[502]	train-mlogloss:0.404559	val-mlogloss:0.528078
[503]	train-mlogloss:0.404336	val-mlogloss:0.528072
[504]	train-mlogloss:0.404149	val-mlogloss:0.528018
[505]	train-mlogloss:0.403971	val-mlogloss:0.527978
[506]	train-mlogloss:0.403749	val-mlogloss:0.527919
[507]	train-mlogloss:0.403526	val-mlogloss:0.527906
[508]	train-mlogloss:0.403282	val-mlogloss:0.527876
[509]	train-mlogloss:0.403125	val-mlogloss:0.527859
[510]	train-mlogloss:0.402941	val-mlogloss:0.527808
[511]	train-mlogloss:0.402718	val-mlogloss:0.527749
[512]	train-mlogloss:0.402491	val-mlogloss:0.527726
[513]	train-mlogloss:0.402277	val-mlogloss:0.527673
[514]	train-mlogloss:0.402119	val-mlogloss:0.527656
[515]	train-mlogloss:0.401897	val-mlogloss:0.527647
[516]	train-mlogloss:0.401657	val-mlogloss:0.527619
[517]	train-mlogloss:0.401458	val-mlogloss:0.527604
[518]	train-mlogloss:0.401285	val-mlogloss:0.527573
[519]	train-mlogloss:0.401086	val-mlogloss:0.527555
[520]	train-mlogloss:0.400848	val-mlogloss:0.527529
[521]	train-mlogloss:0.400619	val-mlogloss:0.527511
[522]	train-mlogloss:0.400401	val-mlogloss:0.527526
[523]	train-mlogloss:0.400092	val-mlogloss:0.527512
[524]	train-mlogloss:0.399866	val-mlogloss:0.527458
[525]	train-mlogloss:0.399638	val-mlogloss:0.527422
[526]	train-mlogloss:0.39939	val-mlogloss:0.527391
[527]	train-mlogloss:0.39923	val-mlogloss:0.527401
[528]	train-mlogloss:0.398992	val-mlogloss:0.527358
[529]	train-mlogloss:0.398817	val-mlogloss:0.527326
[530]	train-mlogloss:0.398633	val-mlogloss:0.527309
[531]	train-mlogloss:0.398441	val-mlogloss:0.527245
[532]	train-mlogloss:0.398259	val-mlogloss:0.527207
[533]	train-mlogloss:0.398026	val-mlogloss:0.527189
[534]	train-mlogloss:0.397845	val-mlogloss:0.52718
[535]	train-mlogloss:0.397635	val-mlogloss:0.527138
[536]	train-mlogloss:0.397412	val-mlogloss:0.527097
[537]	train-mlogloss:0.397213	val-mlogloss:0.527109
[538]	train-mlogloss:0.397033	val-mlogloss:0.527091
[539]	train-mlogloss:0.396801	val-mlogloss:0.527055
[540]	train-mlogloss:0.396608	val-mlogloss:0.527026
[541]	train-mlogloss:0.39645	val-mlogloss:0.527075
[542]	train-mlogloss:0.396258	val-mlogloss:0.527002
[543]	train-mlogloss:0.396116	val-mlogloss:0.526977
[544]	train-mlogloss:0.395882	val-mlogloss:0.526989
[545]	train-mlogloss:0.395652	val-mlogloss:0.526966
[546]	train-mlogloss:0.395493	val-mlogloss:0.526924
[547]	train-mlogloss:0.395286	val-mlogloss:0.526913
[548]	train-mlogloss:0.395081	val-mlogloss:0.526899
[549]	train-mlogloss:0.394807	val-mlogloss:0.526873
[550]	train-mlogloss:0.394582	val-mlogloss:0.526808
[551]	train-mlogloss:0.394384	val-mlogloss:0.526799
[552]	train-mlogloss:0.394183	val-mlogloss:0.526742
[553]	train-mlogloss:0.393957	val-mlogloss:0.526737
[554]	train-mlogloss:0.393844	val-mlogloss:0.526707
[555]	train-mlogloss:0.393643	val-mlogloss:0.526619
[556]	train-mlogloss:0.393382	val-mlogloss:0.526569
[557]	train-mlogloss:0.393209	val-mlogloss:0.526513
[558]	train-mlogloss:0.393053	val-mlogloss:0.52649
[559]	train-mlogloss:0.392836	val-mlogloss:0.526441
[560]	train-mlogloss:0.392688	val-mlogloss:0.526411
[561]	train-mlogloss:0.392496	val-mlogloss:0.526398
[562]	train-mlogloss:0.392312	val-mlogloss:0.526366
[563]	train-mlogloss:0.392132	val-mlogloss:0.526343
[564]	train-mlogloss:0.391897	val-mlogloss:0.526349
[565]	train-mlogloss:0.391734	val-mlogloss:0.52635
[566]	train-mlogloss:0.391429	val-mlogloss:0.526352
[567]	train-mlogloss:0.391241	val-mlogloss:0.526322
[568]	train-mlogloss:0.391031	val-mlogloss:0.526281
[569]	train-mlogloss:0.390791	val-mlogloss:0.526276
[570]	train-mlogloss:0.390586	val-mlogloss:0.526203
[571]	train-mlogloss:0.390344	val-mlogloss:0.526168
[572]	train-mlogloss:0.390131	val-mlogloss:0.526191
[573]	train-mlogloss:0.389906	val-mlogloss:0.526189
[574]	train-mlogloss:0.389712	val-mlogloss:0.526151
[575]	train-mlogloss:0.389538	val-mlogloss:0.526111
[576]	train-mlogloss:0.38935	val-mlogloss:0.52612
[577]	train-mlogloss:0.38919	val-mlogloss:0.526092
[578]	train-mlogloss:0.388925	val-mlogloss:0.526055
[579]	train-mlogloss:0.388643	val-mlogloss:0.52598
[580]	train-mlogloss:0.388449	val-mlogloss:0.525958
[581]	train-mlogloss:0.388257	val-mlogloss:0.525938
[582]	train-mlogloss:0.388065	val-mlogloss:0.525928
[583]	train-mlogloss:0.387837	val-mlogloss:0.525867
[584]	train-mlogloss:0.387648	val-mlogloss:0.525859
[585]	train-mlogloss:0.387398	val-mlogloss:0.525853
[586]	train-mlogloss:0.387218	val-mlogloss:0.525862
[587]	train-mlogloss:0.387074	val-mlogloss:0.525873
[588]	train-mlogloss:0.386852	val-mlogloss:0.525863
[589]	train-mlogloss:0.386617	val-mlogloss:0.525806
[590]	train-mlogloss:0.38646	val-mlogloss:0.525814
[591]	train-mlogloss:0.3862	val-mlogloss:0.525813
[592]	train-mlogloss:0.386018	val-mlogloss:0.525743
[593]	train-mlogloss:0.385854	val-mlogloss:0.525744
[594]	train-mlogloss:0.385727	val-mlogloss:0.525706
[595]	train-mlogloss:0.385483	val-mlogloss:0.525627
[596]	train-mlogloss:0.385274	val-mlogloss:0.525606
[597]	train-mlogloss:0.385099	val-mlogloss:0.525605
[598]	train-mlogloss:0.38486	val-mlogloss:0.525594
[599]	train-mlogloss:0.384618	val-mlogloss:0.525599
[600]	train-mlogloss:0.384405	val-mlogloss:0.525566
[601]	train-mlogloss:0.384178	val-mlogloss:0.525547
[602]	train-mlogloss:0.383954	val-mlogloss:0.525522
[603]	train-mlogloss:0.383812	val-mlogloss:0.525532
[604]	train-mlogloss:0.383671	val-mlogloss:0.525547
[605]	train-mlogloss:0.383479	val-mlogloss:0.525529
[606]	train-mlogloss:0.383336	val-mlogloss:0.525518
[607]	train-mlogloss:0.383046	val-mlogloss:0.5255
[608]	train-mlogloss:0.382902	val-mlogloss:0.525502
[609]	train-mlogloss:0.382703	val-mlogloss:0.525502
[610]	train-mlogloss:0.382458	val-mlogloss:0.525489
[611]	train-mlogloss:0.38217	val-mlogloss:0.525417
[612]	train-mlogloss:0.381975	val-mlogloss:0.525396
[613]	train-mlogloss:0.381809	val-mlogloss:0.525379
[614]	train-mlogloss:0.381602	val-mlogloss:0.525385
[615]	train-mlogloss:0.381417	val-mlogloss:0.525382
[616]	train-mlogloss:0.381192	val-mlogloss:0.525373
[617]	train-mlogloss:0.380953	val-mlogloss:0.525374
[618]	train-mlogloss:0.38076	val-mlogloss:0.525351
[619]	train-mlogloss:0.380557	val-mlogloss:0.525325
[620]	train-mlogloss:0.380412	val-mlogloss:0.525325
[621]	train-mlogloss:0.380303	val-mlogloss:0.525303
[622]	train-mlogloss:0.380121	val-mlogloss:0.525246
[623]	train-mlogloss:0.380011	val-mlogloss:0.525232
[624]	train-mlogloss:0.379814	val-mlogloss:0.525236
[625]	train-mlogloss:0.379549	val-mlogloss:0.525227
[626]	train-mlogloss:0.379359	val-mlogloss:0.525202
[627]	train-mlogloss:0.379182	val-mlogloss:0.525159
[628]	train-mlogloss:0.378951	val-mlogloss:0.525135
[629]	train-mlogloss:0.378801	val-mlogloss:0.525156
[630]	train-mlogloss:0.378679	val-mlogloss:0.525157
[631]	train-mlogloss:0.378469	val-mlogloss:0.525132
[632]	train-mlogloss:0.378299	val-mlogloss:0.525101
[633]	train-mlogloss:0.378054	val-mlogloss:0.525125
[634]	train-mlogloss:0.377914	val-mlogloss:0.52509
[635]	train-mlogloss:0.37771	val-mlogloss:0.525024
[636]	train-mlogloss:0.377475	val-mlogloss:0.525027
[637]	train-mlogloss:0.377267	val-mlogloss:0.524988
[638]	train-mlogloss:0.377076	val-mlogloss:0.52492
[639]	train-mlogloss:0.376935	val-mlogloss:0.524941
[640]	train-mlogloss:0.376747	val-mlogloss:0.524934
[641]	train-mlogloss:0.376554	val-mlogloss:0.52487
[642]	train-mlogloss:0.376412	val-mlogloss:0.524875
[643]	train-mlogloss:0.376152	val-mlogloss:0.524883
[644]	train-mlogloss:0.375969	val-mlogloss:0.524844
[645]	train-mlogloss:0.375764	val-mlogloss:0.524778
[646]	train-mlogloss:0.375579	val-mlogloss:0.524743
[647]	train-mlogloss:0.375416	val-mlogloss:0.524732
[648]	train-mlogloss:0.37518	val-mlogloss:0.52466
[649]	train-mlogloss:0.375055	val-mlogloss:0.524676
[650]	train-mlogloss:0.374908	val-mlogloss:0.524631
[651]	train-mlogloss:0.374776	val-mlogloss:0.524623
[652]	train-mlogloss:0.374624	val-mlogloss:0.524599
[653]	train-mlogloss:0.374369	val-mlogloss:0.524511
[654]	train-mlogloss:0.374153	val-mlogloss:0.524528
[655]	train-mlogloss:0.374046	val-mlogloss:0.524541
[656]	train-mlogloss:0.37385	val-mlogloss:0.524535
[657]	train-mlogloss:0.373621	val-mlogloss:0.524488
[658]	train-mlogloss:0.373414	val-mlogloss:0.524443
[659]	train-mlogloss:0.373268	val-mlogloss:0.524465
[660]	train-mlogloss:0.373125	val-mlogloss:0.524475
[661]	train-mlogloss:0.372899	val-mlogloss:0.524408
[662]	train-mlogloss:0.372679	val-mlogloss:0.524396
[663]	train-mlogloss:0.372486	val-mlogloss:0.52437
[664]	train-mlogloss:0.372279	val-mlogloss:0.524376
[665]	train-mlogloss:0.372108	val-mlogloss:0.524334
[666]	train-mlogloss:0.371932	val-mlogloss:0.524345
[667]	train-mlogloss:0.371669	val-mlogloss:0.524308
[668]	train-mlogloss:0.371435	val-mlogloss:0.524289
[669]	train-mlogloss:0.371251	val-mlogloss:0.524311
[670]	train-mlogloss:0.371047	val-mlogloss:0.524291
[671]	train-mlogloss:0.370853	val-mlogloss:0.52426
[672]	train-mlogloss:0.370669	val-mlogloss:0.524288
[673]	train-mlogloss:0.370513	val-mlogloss:0.524311
[674]	train-mlogloss:0.370256	val-mlogloss:0.524243
[675]	train-mlogloss:0.370065	val-mlogloss:0.524236
[676]	train-mlogloss:0.369835	val-mlogloss:0.524239
[677]	train-mlogloss:0.369686	val-mlogloss:0.524248
[678]	train-mlogloss:0.369513	val-mlogloss:0.524225
[679]	train-mlogloss:0.369305	val-mlogloss:0.524229
[680]	train-mlogloss:0.369146	val-mlogloss:0.524233
[681]	train-mlogloss:0.368977	val-mlogloss:0.524206
[682]	train-mlogloss:0.368749	val-mlogloss:0.524171
[683]	train-mlogloss:0.368533	val-mlogloss:0.52414
[684]	train-mlogloss:0.368408	val-mlogloss:0.52413
[685]	train-mlogloss:0.36818	val-mlogloss:0.524102
[686]	train-mlogloss:0.368029	val-mlogloss:0.524073
[687]	train-mlogloss:0.36782	val-mlogloss:0.524102
[688]	train-mlogloss:0.367652	val-mlogloss:0.524064
[689]	train-mlogloss:0.367422	val-mlogloss:0.524042
[690]	train-mlogloss:0.367188	val-mlogloss:0.524025
[691]	train-mlogloss:0.366962	val-mlogloss:0.523989
[692]	train-mlogloss:0.366789	val-mlogloss:0.523997
[693]	train-mlogloss:0.366613	val-mlogloss:0.523995
[694]	train-mlogloss:0.3664	val-mlogloss:0.52399
[695]	train-mlogloss:0.366185	val-mlogloss:0.523968
[696]	train-mlogloss:0.36603	val-mlogloss:0.523936
[697]	train-mlogloss:0.365794	val-mlogloss:0.523942
[698]	train-mlogloss:0.365618	val-mlogloss:0.523938
[699]	train-mlogloss:0.365403	val-mlogloss:0.523943
[700]	train-mlogloss:0.365215	val-mlogloss:0.52391
[701]	train-mlogloss:0.365009	val-mlogloss:0.52388
[702]	train-mlogloss:0.364834	val-mlogloss:0.523856
[703]	train-mlogloss:0.364674	val-mlogloss:0.523865
[704]	train-mlogloss:0.364503	val-mlogloss:0.523872
[705]	train-mlogloss:0.364338	val-mlogloss:0.523879
[706]	train-mlogloss:0.3641	val-mlogloss:0.5239
[707]	train-mlogloss:0.363959	val-mlogloss:0.52389
[708]	train-mlogloss:0.363772	val-mlogloss:0.523913
[709]	train-mlogloss:0.363512	val-mlogloss:0.523931
[710]	train-mlogloss:0.363417	val-mlogloss:0.52393
[711]	train-mlogloss:0.363217	val-mlogloss:0.52391
[712]	train-mlogloss:0.363101	val-mlogloss:0.523878
[713]	train-mlogloss:0.362919	val-mlogloss:0.523827
[714]	train-mlogloss:0.362759	val-mlogloss:0.52384
[715]	train-mlogloss:0.36256	val-mlogloss:0.523836
[716]	train-mlogloss:0.362378	val-mlogloss:0.523789
[717]	train-mlogloss:0.362146	val-mlogloss:0.523781
[718]	train-mlogloss:0.361999	val-mlogloss:0.523797
[719]	train-mlogloss:0.361766	val-mlogloss:0.523805
[720]	train-mlogloss:0.361568	val-mlogloss:0.523776
[721]	train-mlogloss:0.361455	val-mlogloss:0.523782
[722]	train-mlogloss:0.361307	val-mlogloss:0.523762
[723]	train-mlogloss:0.361064	val-mlogloss:0.523755
[724]	train-mlogloss:0.360922	val-mlogloss:0.523767
[725]	train-mlogloss:0.360729	val-mlogloss:0.523752
[726]	train-mlogloss:0.360607	val-mlogloss:0.523737
[727]	train-mlogloss:0.360432	val-mlogloss:0.523728
[728]	train-mlogloss:0.360268	val-mlogloss:0.523708
[729]	train-mlogloss:0.360057	val-mlogloss:0.523682
[730]	train-mlogloss:0.359905	val-mlogloss:0.523674
[731]	train-mlogloss:0.359722	val-mlogloss:0.523653
[732]	train-mlogloss:0.35954	val-mlogloss:0.523631
[733]	train-mlogloss:0.359365	val-mlogloss:0.523615
[734]	train-mlogloss:0.359199	val-mlogloss:0.523593
[735]	train-mlogloss:0.359013	val-mlogloss:0.523575
[736]	train-mlogloss:0.358796	val-mlogloss:0.523542
[737]	train-mlogloss:0.358611	val-mlogloss:0.523497
[738]	train-mlogloss:0.35842	val-mlogloss:0.5235
[739]	train-mlogloss:0.35823	val-mlogloss:0.523498
[740]	train-mlogloss:0.358086	val-mlogloss:0.523499
[741]	train-mlogloss:0.357912	val-mlogloss:0.523516
[742]	train-mlogloss:0.357789	val-mlogloss:0.523504
[743]	train-mlogloss:0.357636	val-mlogloss:0.52351
[744]	train-mlogloss:0.357457	val-mlogloss:0.523539
[745]	train-mlogloss:0.357272	val-mlogloss:0.523538
[746]	train-mlogloss:0.357107	val-mlogloss:0.523541
[747]	train-mlogloss:0.356867	val-mlogloss:0.523546
[748]	train-mlogloss:0.3567	val-mlogloss:0.523564
[749]	train-mlogloss:0.356503	val-mlogloss:0.523573
[750]	train-mlogloss:0.356371	val-mlogloss:0.523534
[751]	train-mlogloss:0.356266	val-mlogloss:0.52354
[752]	train-mlogloss:0.356061	val-mlogloss:0.523485
[753]	train-mlogloss:0.355897	val-mlogloss:0.5235
[754]	train-mlogloss:0.355704	val-mlogloss:0.523533
[755]	train-mlogloss:0.355526	val-mlogloss:0.523529
[756]	train-mlogloss:0.355383	val-mlogloss:0.523532
[757]	train-mlogloss:0.355153	val-mlogloss:0.5235
[758]	train-mlogloss:0.355072	val-mlogloss:0.523504
[759]	train-mlogloss:0.354937	val-mlogloss:0.523462
[760]	train-mlogloss:0.354807	val-mlogloss:0.523458
[761]	train-mlogloss:0.354701	val-mlogloss:0.52346
[762]	train-mlogloss:0.354551	val-mlogloss:0.523457
[763]	train-mlogloss:0.354352	val-mlogloss:0.523443
[764]	train-mlogloss:0.354162	val-mlogloss:0.523433
[765]	train-mlogloss:0.353938	val-mlogloss:0.523396
[766]	train-mlogloss:0.353779	val-mlogloss:0.523397
[767]	train-mlogloss:0.353593	val-mlogloss:0.523403
[768]	train-mlogloss:0.353433	val-mlogloss:0.523404
[769]	train-mlogloss:0.353226	val-mlogloss:0.523345
[770]	train-mlogloss:0.353066	val-mlogloss:0.523342
[771]	train-mlogloss:0.352944	val-mlogloss:0.523383
[772]	train-mlogloss:0.352773	val-mlogloss:0.523393
[773]	train-mlogloss:0.352574	val-mlogloss:0.5234
[774]	train-mlogloss:0.352416	val-mlogloss:0.523409
[775]	train-mlogloss:0.35225	val-mlogloss:0.523392
[776]	train-mlogloss:0.3521	val-mlogloss:0.523408
[777]	train-mlogloss:0.351972	val-mlogloss:0.523406
[778]	train-mlogloss:0.35179	val-mlogloss:0.523377
[779]	train-mlogloss:0.351572	val-mlogloss:0.523351
[780]	train-mlogloss:0.351361	val-mlogloss:0.52334
[781]	train-mlogloss:0.351168	val-mlogloss:0.523309
[782]	train-mlogloss:0.350993	val-mlogloss:0.523334
[783]	train-mlogloss:0.350819	val-mlogloss:0.523338
[784]	train-mlogloss:0.350615	val-mlogloss:0.523344
[785]	train-mlogloss:0.3504	val-mlogloss:0.523372
[786]	train-mlogloss:0.350234	val-mlogloss:0.523382
[787]	train-mlogloss:0.350087	val-mlogloss:0.523383
[788]	train-mlogloss:0.349914	val-mlogloss:0.523383
[789]	train-mlogloss:0.349769	val-mlogloss:0.523398
[790]	train-mlogloss:0.349541	val-mlogloss:0.523437
[791]	train-mlogloss:0.349396	val-mlogloss:0.523431
[792]	train-mlogloss:0.349209	val-mlogloss:0.523434
[793]	train-mlogloss:0.349053	val-mlogloss:0.523419
[794]	train-mlogloss:0.348905	val-mlogloss:0.523401
[795]	train-mlogloss:0.348702	val-mlogloss:0.523373
[796]	train-mlogloss:0.348557	val-mlogloss:0.523318
[797]	train-mlogloss:0.348373	val-mlogloss:0.523317
[798]	train-mlogloss:0.348187	val-mlogloss:0.523313
[799]	train-mlogloss:0.348008	val-mlogloss:0.52329
[800]	train-mlogloss:0.347869	val-mlogloss:0.523284
[801]	train-mlogloss:0.347708	val-mlogloss:0.52328
[802]	train-mlogloss:0.347545	val-mlogloss:0.523307
[803]	train-mlogloss:0.347422	val-mlogloss:0.523282
[804]	train-mlogloss:0.347309	val-mlogloss:0.52327
[805]	train-mlogloss:0.347186	val-mlogloss:0.523286
[806]	train-mlogloss:0.34704	val-mlogloss:0.523284
[807]	train-mlogloss:0.346885	val-mlogloss:0.523294
[808]	train-mlogloss:0.34676	val-mlogloss:0.523258
[809]	train-mlogloss:0.346605	val-mlogloss:0.523268
[810]	train-mlogloss:0.346444	val-mlogloss:0.523305
[811]	train-mlogloss:0.346237	val-mlogloss:0.523309
[812]	train-mlogloss:0.346062	val-mlogloss:0.523282
[813]	train-mlogloss:0.345885	val-mlogloss:0.523256
[814]	train-mlogloss:0.345722	val-mlogloss:0.523252
[815]	train-mlogloss:0.345582	val-mlogloss:0.523265
[816]	train-mlogloss:0.345406	val-mlogloss:0.523257
[817]	train-mlogloss:0.34522	val-mlogloss:0.523215
[818]	train-mlogloss:0.345029	val-mlogloss:0.523199
[819]	train-mlogloss:0.344815	val-mlogloss:0.523195
[820]	train-mlogloss:0.344627	val-mlogloss:0.523149
[821]	train-mlogloss:0.344451	val-mlogloss:0.523176
[822]	train-mlogloss:0.344286	val-mlogloss:0.523143
[823]	train-mlogloss:0.344168	val-mlogloss:0.523117
[824]	train-mlogloss:0.34405	val-mlogloss:0.523096
[825]	train-mlogloss:0.343914	val-mlogloss:0.523095
[826]	train-mlogloss:0.343756	val-mlogloss:0.523072
[827]	train-mlogloss:0.343568	val-mlogloss:0.523085
[828]	train-mlogloss:0.343444	val-mlogloss:0.523087
[829]	train-mlogloss:0.34332	val-mlogloss:0.523075
[830]	train-mlogloss:0.343225	val-mlogloss:0.523055
[831]	train-mlogloss:0.343039	val-mlogloss:0.52305
[832]	train-mlogloss:0.342854	val-mlogloss:0.523085
[833]	train-mlogloss:0.342719	val-mlogloss:0.523092
[834]	train-mlogloss:0.342519	val-mlogloss:0.52306
[835]	train-mlogloss:0.342354	val-mlogloss:0.523065
[836]	train-mlogloss:0.342209	val-mlogloss:0.523067
[837]	train-mlogloss:0.342027	val-mlogloss:0.523011
[838]	train-mlogloss:0.34187	val-mlogloss:0.523017
[839]	train-mlogloss:0.34173	val-mlogloss:0.523026
[840]	train-mlogloss:0.341499	val-mlogloss:0.523044
[841]	train-mlogloss:0.34135	val-mlogloss:0.523059
[842]	train-mlogloss:0.341207	val-mlogloss:0.523048
[843]	train-mlogloss:0.341056	val-mlogloss:0.523046
[844]	train-mlogloss:0.340943	val-mlogloss:0.523037
[845]	train-mlogloss:0.34078	val-mlogloss:0.523023
[846]	train-mlogloss:0.340651	val-mlogloss:0.523037
[847]	train-mlogloss:0.340508	val-mlogloss:0.523051
[848]	train-mlogloss:0.340375	val-mlogloss:0.523032
[849]	train-mlogloss:0.340164	val-mlogloss:0.522985
[850]	train-mlogloss:0.339945	val-mlogloss:0.522923
[851]	train-mlogloss:0.339745	val-mlogloss:0.522925
[852]	train-mlogloss:0.339524	val-mlogloss:0.522907
[853]	train-mlogloss:0.339394	val-mlogloss:0.522922
[854]	train-mlogloss:0.339256	val-mlogloss:0.522933
[855]	train-mlogloss:0.339093	val-mlogloss:0.522914
[856]	train-mlogloss:0.338937	val-mlogloss:0.522909
[857]	train-mlogloss:0.338763	val-mlogloss:0.522863
[858]	train-mlogloss:0.338585	val-mlogloss:0.522859
[859]	train-mlogloss:0.338406	val-mlogloss:0.522886
[860]	train-mlogloss:0.338228	val-mlogloss:0.522889
[861]	train-mlogloss:0.338095	val-mlogloss:0.522896
[862]	train-mlogloss:0.337953	val-mlogloss:0.522874
[863]	train-mlogloss:0.337752	val-mlogloss:0.52286
[864]	train-mlogloss:0.337593	val-mlogloss:0.522829
[865]	train-mlogloss:0.337405	val-mlogloss:0.522804
[866]	train-mlogloss:0.337231	val-mlogloss:0.522808
[867]	train-mlogloss:0.337117	val-mlogloss:0.522804
[868]	train-mlogloss:0.336964	val-mlogloss:0.522855
[869]	train-mlogloss:0.336824	val-mlogloss:0.522847
[870]	train-mlogloss:0.336689	val-mlogloss:0.522864
[871]	train-mlogloss:0.336514	val-mlogloss:0.522887
[872]	train-mlogloss:0.336291	val-mlogloss:0.522927
[873]	train-mlogloss:0.336134	val-mlogloss:0.522902
[874]	train-mlogloss:0.335983	val-mlogloss:0.522891
[875]	train-mlogloss:0.335821	val-mlogloss:0.522886
[876]	train-mlogloss:0.335676	val-mlogloss:0.522897
[877]	train-mlogloss:0.335514	val-mlogloss:0.522909
[878]	train-mlogloss:0.335382	val-mlogloss:0.522913
[879]	train-mlogloss:0.335245	val-mlogloss:0.522932
[880]	train-mlogloss:0.335035	val-mlogloss:0.522914
[881]	train-mlogloss:0.334899	val-mlogloss:0.522914
[882]	train-mlogloss:0.334784	val-mlogloss:0.522899
[883]	train-mlogloss:0.334605	val-mlogloss:0.522893
[884]	train-mlogloss:0.334431	val-mlogloss:0.52288
[885]	train-mlogloss:0.334255	val-mlogloss:0.522915
[886]	train-mlogloss:0.334076	val-mlogloss:0.522914
[887]	train-mlogloss:0.333908	val-mlogloss:0.522885
[888]	train-mlogloss:0.33372	val-mlogloss:0.52287
[889]	train-mlogloss:0.333555	val-mlogloss:0.522884
[890]	train-mlogloss:0.333378	val-mlogloss:0.522902
[891]	train-mlogloss:0.333235	val-mlogloss:0.522946
[892]	train-mlogloss:0.33305	val-mlogloss:0.522927
[893]	train-mlogloss:0.332887	val-mlogloss:0.522915
[894]	train-mlogloss:0.33272	val-mlogloss:0.522928
[895]	train-mlogloss:0.332567	val-mlogloss:0.522931
[896]	train-mlogloss:0.332443	val-mlogloss:0.522911
[897]	train-mlogloss:0.332324	val-mlogloss:0.522919
[898]	train-mlogloss:0.332121	val-mlogloss:0.522884
[899]	train-mlogloss:0.331961	val-mlogloss:0.522859
[900]	train-mlogloss:0.331842	val-mlogloss:0.522851
[901]	train-mlogloss:0.331648	val-mlogloss:0.522883
[902]	train-mlogloss:0.331474	val-mlogloss:0.522855
[903]	train-mlogloss:0.331273	val-mlogloss:0.522898
[904]	train-mlogloss:0.331089	val-mlogloss:0.522878
[905]	train-mlogloss:0.330961	val-mlogloss:0.522882
[906]	train-mlogloss:0.330827	val-mlogloss:0.522893
[907]	train-mlogloss:0.330636	val-mlogloss:0.522899
[908]	train-mlogloss:0.330424	val-mlogloss:0.522862
[909]	train-mlogloss:0.330288	val-mlogloss:0.522865
[910]	train-mlogloss:0.330196	val-mlogloss:0.522886
[911]	train-mlogloss:0.330057	val-mlogloss:0.522894
[912]	train-mlogloss:0.329876	val-mlogloss:0.522889
[913]	train-mlogloss:0.329669	val-mlogloss:0.52291
[914]	train-mlogloss:0.329537	val-mlogloss:0.522908
[915]	train-mlogloss:0.32941	val-mlogloss:0.522892
Stopping. Best iteration:
[865]	train-mlogloss:0.337405	val-mlogloss:0.522804

[0]	train-mlogloss:1.07785	val-mlogloss:1.07825
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.

Will train until val-mlogloss hasn't improved in 50 rounds.
[1]	train-mlogloss:1.0582	val-mlogloss:1.05903
[2]	train-mlogloss:1.03946	val-mlogloss:1.04071
[3]	train-mlogloss:1.02154	val-mlogloss:1.02319
[4]	train-mlogloss:1.00437	val-mlogloss:1.00642
[5]	train-mlogloss:0.987855	val-mlogloss:0.990305
[6]	train-mlogloss:0.972221	val-mlogloss:0.975104
[7]	train-mlogloss:0.957366	val-mlogloss:0.960616
[8]	train-mlogloss:0.943297	val-mlogloss:0.946981
[9]	train-mlogloss:0.929506	val-mlogloss:0.933642
[10]	train-mlogloss:0.916266	val-mlogloss:0.920858
[11]	train-mlogloss:0.903524	val-mlogloss:0.908541
[12]	train-mlogloss:0.891404	val-mlogloss:0.896886
[13]	train-mlogloss:0.879722	val-mlogloss:0.885705
[14]	train-mlogloss:0.8689	val-mlogloss:0.875322
[15]	train-mlogloss:0.858222	val-mlogloss:0.864991
[16]	train-mlogloss:0.847995	val-mlogloss:0.855176
[17]	train-mlogloss:0.838038	val-mlogloss:0.84568
[18]	train-mlogloss:0.828382	val-mlogloss:0.836429
[19]	train-mlogloss:0.819163	val-mlogloss:0.827621
[20]	train-mlogloss:0.810383	val-mlogloss:0.819255
[21]	train-mlogloss:0.801857	val-mlogloss:0.811102
[22]	train-mlogloss:0.793707	val-mlogloss:0.80333
[23]	train-mlogloss:0.785836	val-mlogloss:0.795771
[24]	train-mlogloss:0.778428	val-mlogloss:0.788722
[25]	train-mlogloss:0.771093	val-mlogloss:0.781718
[26]	train-mlogloss:0.763979	val-mlogloss:0.774973
[27]	train-mlogloss:0.757088	val-mlogloss:0.768487
[28]	train-mlogloss:0.750398	val-mlogloss:0.762178
[29]	train-mlogloss:0.743901	val-mlogloss:0.75604
[30]	train-mlogloss:0.737662	val-mlogloss:0.750153
[31]	train-mlogloss:0.731693	val-mlogloss:0.74453
[32]	train-mlogloss:0.725852	val-mlogloss:0.738958
[33]	train-mlogloss:0.720252	val-mlogloss:0.733735
[34]	train-mlogloss:0.714827	val-mlogloss:0.728684
[35]	train-mlogloss:0.709578	val-mlogloss:0.723759
[36]	train-mlogloss:0.704497	val-mlogloss:0.718999
[37]	train-mlogloss:0.699626	val-mlogloss:0.714491
[38]	train-mlogloss:0.694773	val-mlogloss:0.710037
[39]	train-mlogloss:0.690238	val-mlogloss:0.70579
[40]	train-mlogloss:0.685813	val-mlogloss:0.701629
[41]	train-mlogloss:0.681533	val-mlogloss:0.697623
[42]	train-mlogloss:0.677345	val-mlogloss:0.693759
[43]	train-mlogloss:0.673366	val-mlogloss:0.690083
[44]	train-mlogloss:0.669395	val-mlogloss:0.686464
[45]	train-mlogloss:0.665575	val-mlogloss:0.682988
[46]	train-mlogloss:0.661837	val-mlogloss:0.679562
[47]	train-mlogloss:0.658217	val-mlogloss:0.676277
[48]	train-mlogloss:0.65475	val-mlogloss:0.673134
[49]	train-mlogloss:0.651412	val-mlogloss:0.670106
[50]	train-mlogloss:0.648128	val-mlogloss:0.667196
[51]	train-mlogloss:0.644857	val-mlogloss:0.664234
[52]	train-mlogloss:0.641723	val-mlogloss:0.661384
[53]	train-mlogloss:0.638677	val-mlogloss:0.658674
[54]	train-mlogloss:0.635725	val-mlogloss:0.656072
[55]	train-mlogloss:0.632872	val-mlogloss:0.653521
[56]	train-mlogloss:0.630086	val-mlogloss:0.650979
[57]	train-mlogloss:0.627273	val-mlogloss:0.648463
[58]	train-mlogloss:0.624551	val-mlogloss:0.646015
[59]	train-mlogloss:0.62197	val-mlogloss:0.643723
[60]	train-mlogloss:0.61944	val-mlogloss:0.641483
[61]	train-mlogloss:0.616964	val-mlogloss:0.639327
[62]	train-mlogloss:0.614619	val-mlogloss:0.637322
[63]	train-mlogloss:0.612233	val-mlogloss:0.635285
[64]	train-mlogloss:0.609922	val-mlogloss:0.633292
[65]	train-mlogloss:0.607697	val-mlogloss:0.631391
[66]	train-mlogloss:0.605498	val-mlogloss:0.629606
[67]	train-mlogloss:0.603355	val-mlogloss:0.627792
[68]	train-mlogloss:0.601346	val-mlogloss:0.626151
[69]	train-mlogloss:0.599292	val-mlogloss:0.62445
[70]	train-mlogloss:0.597326	val-mlogloss:0.622801
[71]	train-mlogloss:0.595447	val-mlogloss:0.621207
[72]	train-mlogloss:0.593632	val-mlogloss:0.619683
[73]	train-mlogloss:0.591846	val-mlogloss:0.618164
[74]	train-mlogloss:0.590101	val-mlogloss:0.616719
[75]	train-mlogloss:0.588289	val-mlogloss:0.615183
[76]	train-mlogloss:0.586602	val-mlogloss:0.613799
[77]	train-mlogloss:0.584893	val-mlogloss:0.61237
[78]	train-mlogloss:0.583316	val-mlogloss:0.611039
[79]	train-mlogloss:0.581734	val-mlogloss:0.609774
[80]	train-mlogloss:0.580268	val-mlogloss:0.608554
[81]	train-mlogloss:0.578785	val-mlogloss:0.607345
[82]	train-mlogloss:0.577278	val-mlogloss:0.606117
[83]	train-mlogloss:0.575804	val-mlogloss:0.604974
[84]	train-mlogloss:0.574357	val-mlogloss:0.60382
[85]	train-mlogloss:0.572941	val-mlogloss:0.602667
[86]	train-mlogloss:0.571605	val-mlogloss:0.60161
[87]	train-mlogloss:0.570198	val-mlogloss:0.600547
[88]	train-mlogloss:0.568929	val-mlogloss:0.599592
[89]	train-mlogloss:0.567643	val-mlogloss:0.598599
[90]	train-mlogloss:0.566372	val-mlogloss:0.59768
[91]	train-mlogloss:0.565085	val-mlogloss:0.596689
[92]	train-mlogloss:0.563884	val-mlogloss:0.59582
[93]	train-mlogloss:0.562644	val-mlogloss:0.594855
[94]	train-mlogloss:0.561561	val-mlogloss:0.594006
[95]	train-mlogloss:0.560391	val-mlogloss:0.593116
[96]	train-mlogloss:0.559274	val-mlogloss:0.59229
[97]	train-mlogloss:0.558084	val-mlogloss:0.591398
[98]	train-mlogloss:0.556943	val-mlogloss:0.590538
[99]	train-mlogloss:0.555858	val-mlogloss:0.589803
[100]	train-mlogloss:0.554837	val-mlogloss:0.589035
[101]	train-mlogloss:0.553805	val-mlogloss:0.58836
[102]	train-mlogloss:0.552648	val-mlogloss:0.587532
[103]	train-mlogloss:0.551648	val-mlogloss:0.586783
[104]	train-mlogloss:0.550663	val-mlogloss:0.586083
[105]	train-mlogloss:0.549617	val-mlogloss:0.585348
[106]	train-mlogloss:0.54865	val-mlogloss:0.584681
[107]	train-mlogloss:0.547785	val-mlogloss:0.584105
[108]	train-mlogloss:0.546879	val-mlogloss:0.583442
[109]	train-mlogloss:0.545901	val-mlogloss:0.58276
[110]	train-mlogloss:0.544986	val-mlogloss:0.582161
[111]	train-mlogloss:0.544139	val-mlogloss:0.581622
[112]	train-mlogloss:0.543167	val-mlogloss:0.580955
[113]	train-mlogloss:0.542304	val-mlogloss:0.58035
[114]	train-mlogloss:0.541369	val-mlogloss:0.57978
[115]	train-mlogloss:0.540522	val-mlogloss:0.579216
[116]	train-mlogloss:0.539658	val-mlogloss:0.578638
[117]	train-mlogloss:0.538679	val-mlogloss:0.578041
[118]	train-mlogloss:0.537863	val-mlogloss:0.577519
[119]	train-mlogloss:0.537107	val-mlogloss:0.576979
[120]	train-mlogloss:0.536314	val-mlogloss:0.576421
[121]	train-mlogloss:0.535567	val-mlogloss:0.575928
[122]	train-mlogloss:0.534803	val-mlogloss:0.575442
[123]	train-mlogloss:0.534078	val-mlogloss:0.574993
[124]	train-mlogloss:0.533389	val-mlogloss:0.574526
[125]	train-mlogloss:0.532703	val-mlogloss:0.574091
[126]	train-mlogloss:0.532017	val-mlogloss:0.573663
[127]	train-mlogloss:0.531309	val-mlogloss:0.573253
[128]	train-mlogloss:0.53063	val-mlogloss:0.572846
[129]	train-mlogloss:0.529968	val-mlogloss:0.572415
[130]	train-mlogloss:0.529335	val-mlogloss:0.572049
[131]	train-mlogloss:0.528685	val-mlogloss:0.571711
[132]	train-mlogloss:0.528061	val-mlogloss:0.571366
[133]	train-mlogloss:0.527301	val-mlogloss:0.570923
[134]	train-mlogloss:0.526539	val-mlogloss:0.570497
[135]	train-mlogloss:0.525815	val-mlogloss:0.570027
[136]	train-mlogloss:0.525122	val-mlogloss:0.569657
[137]	train-mlogloss:0.524489	val-mlogloss:0.569284
[138]	train-mlogloss:0.523731	val-mlogloss:0.568811
[139]	train-mlogloss:0.522972	val-mlogloss:0.56842
[140]	train-mlogloss:0.5223	val-mlogloss:0.568048
[141]	train-mlogloss:0.521723	val-mlogloss:0.567638
[142]	train-mlogloss:0.521182	val-mlogloss:0.567328
[143]	train-mlogloss:0.52058	val-mlogloss:0.566909
[144]	train-mlogloss:0.520076	val-mlogloss:0.566641
[145]	train-mlogloss:0.519462	val-mlogloss:0.566317
[146]	train-mlogloss:0.518859	val-mlogloss:0.565986
[147]	train-mlogloss:0.518194	val-mlogloss:0.565587
[148]	train-mlogloss:0.51744	val-mlogloss:0.565218
[149]	train-mlogloss:0.516725	val-mlogloss:0.564843
[150]	train-mlogloss:0.516055	val-mlogloss:0.564456
[151]	train-mlogloss:0.515416	val-mlogloss:0.56407
[152]	train-mlogloss:0.514901	val-mlogloss:0.563762
[153]	train-mlogloss:0.514311	val-mlogloss:0.563434
[154]	train-mlogloss:0.513734	val-mlogloss:0.563169
[155]	train-mlogloss:0.513167	val-mlogloss:0.562879
[156]	train-mlogloss:0.512589	val-mlogloss:0.562547
[157]	train-mlogloss:0.511944	val-mlogloss:0.562145
[158]	train-mlogloss:0.51138	val-mlogloss:0.561897
[159]	train-mlogloss:0.510808	val-mlogloss:0.561551
[160]	train-mlogloss:0.510272	val-mlogloss:0.561292
[161]	train-mlogloss:0.509834	val-mlogloss:0.56101
[162]	train-mlogloss:0.509298	val-mlogloss:0.560671
[163]	train-mlogloss:0.50881	val-mlogloss:0.560378
[164]	train-mlogloss:0.508305	val-mlogloss:0.56017
[165]	train-mlogloss:0.507741	val-mlogloss:0.55989
[166]	train-mlogloss:0.507189	val-mlogloss:0.559571
[167]	train-mlogloss:0.506647	val-mlogloss:0.559371
[168]	train-mlogloss:0.506029	val-mlogloss:0.558949
[169]	train-mlogloss:0.505543	val-mlogloss:0.558686
[170]	train-mlogloss:0.505113	val-mlogloss:0.558437
[171]	train-mlogloss:0.504671	val-mlogloss:0.558226
[172]	train-mlogloss:0.504233	val-mlogloss:0.558007
[173]	train-mlogloss:0.503679	val-mlogloss:0.557749
[174]	train-mlogloss:0.503192	val-mlogloss:0.557459
[175]	train-mlogloss:0.502703	val-mlogloss:0.557235
[176]	train-mlogloss:0.502156	val-mlogloss:0.557024
[177]	train-mlogloss:0.501658	val-mlogloss:0.556775
[178]	train-mlogloss:0.501222	val-mlogloss:0.556531
[179]	train-mlogloss:0.500667	val-mlogloss:0.55634
[180]	train-mlogloss:0.500342	val-mlogloss:0.55616
[181]	train-mlogloss:0.499914	val-mlogloss:0.555947
[182]	train-mlogloss:0.499343	val-mlogloss:0.555745
[183]	train-mlogloss:0.498898	val-mlogloss:0.555535
[184]	train-mlogloss:0.49826	val-mlogloss:0.555282
[185]	train-mlogloss:0.497954	val-mlogloss:0.555067
[186]	train-mlogloss:0.49751	val-mlogloss:0.554851
[187]	train-mlogloss:0.49703	val-mlogloss:0.554695
[188]	train-mlogloss:0.496589	val-mlogloss:0.554523
[189]	train-mlogloss:0.495993	val-mlogloss:0.554334
[190]	train-mlogloss:0.495666	val-mlogloss:0.554193
[191]	train-mlogloss:0.495252	val-mlogloss:0.554002
[192]	train-mlogloss:0.494855	val-mlogloss:0.55381
[193]	train-mlogloss:0.494441	val-mlogloss:0.553616
[194]	train-mlogloss:0.494088	val-mlogloss:0.55348
[195]	train-mlogloss:0.493671	val-mlogloss:0.553313
[196]	train-mlogloss:0.493239	val-mlogloss:0.553137
[197]	train-mlogloss:0.49268	val-mlogloss:0.552878
[198]	train-mlogloss:0.492216	val-mlogloss:0.552693
[199]	train-mlogloss:0.49184	val-mlogloss:0.552551
[200]	train-mlogloss:0.491429	val-mlogloss:0.552429
[201]	train-mlogloss:0.490851	val-mlogloss:0.552207
[202]	train-mlogloss:0.490464	val-mlogloss:0.552086
[203]	train-mlogloss:0.489891	val-mlogloss:0.551866
[204]	train-mlogloss:0.489437	val-mlogloss:0.551619
[205]	train-mlogloss:0.488978	val-mlogloss:0.55144
[206]	train-mlogloss:0.488494	val-mlogloss:0.551249
[207]	train-mlogloss:0.488092	val-mlogloss:0.551073
[208]	train-mlogloss:0.487638	val-mlogloss:0.550952
[209]	train-mlogloss:0.487065	val-mlogloss:0.550739
[210]	train-mlogloss:0.486616	val-mlogloss:0.55058
[211]	train-mlogloss:0.48622	val-mlogloss:0.55042
[212]	train-mlogloss:0.485853	val-mlogloss:0.5503
[213]	train-mlogloss:0.485378	val-mlogloss:0.550088
[214]	train-mlogloss:0.485036	val-mlogloss:0.549964
[215]	train-mlogloss:0.484552	val-mlogloss:0.549798
[216]	train-mlogloss:0.484269	val-mlogloss:0.54968
[217]	train-mlogloss:0.483891	val-mlogloss:0.549583
[218]	train-mlogloss:0.48347	val-mlogloss:0.549424
[219]	train-mlogloss:0.483091	val-mlogloss:0.549273
[220]	train-mlogloss:0.482798	val-mlogloss:0.54916
[221]	train-mlogloss:0.482357	val-mlogloss:0.549014
[222]	train-mlogloss:0.48193	val-mlogloss:0.548858
[223]	train-mlogloss:0.481492	val-mlogloss:0.54869
[224]	train-mlogloss:0.480971	val-mlogloss:0.548494
[225]	train-mlogloss:0.480581	val-mlogloss:0.548341
[226]	train-mlogloss:0.480097	val-mlogloss:0.548211
[227]	train-mlogloss:0.479648	val-mlogloss:0.548091
[228]	train-mlogloss:0.47921	val-mlogloss:0.547966
[229]	train-mlogloss:0.478926	val-mlogloss:0.547817
[230]	train-mlogloss:0.478524	val-mlogloss:0.547653
[231]	train-mlogloss:0.478152	val-mlogloss:0.54751
[232]	train-mlogloss:0.477809	val-mlogloss:0.54737
[233]	train-mlogloss:0.477444	val-mlogloss:0.547203
[234]	train-mlogloss:0.477026	val-mlogloss:0.54705
[235]	train-mlogloss:0.476673	val-mlogloss:0.546912
[236]	train-mlogloss:0.47627	val-mlogloss:0.546745
[237]	train-mlogloss:0.47585	val-mlogloss:0.546651
[238]	train-mlogloss:0.475429	val-mlogloss:0.546494
[239]	train-mlogloss:0.47509	val-mlogloss:0.546328
[240]	train-mlogloss:0.474733	val-mlogloss:0.546159
[241]	train-mlogloss:0.474366	val-mlogloss:0.546064
[242]	train-mlogloss:0.473955	val-mlogloss:0.545925
[243]	train-mlogloss:0.473698	val-mlogloss:0.545821
[244]	train-mlogloss:0.473255	val-mlogloss:0.545753
[245]	train-mlogloss:0.473001	val-mlogloss:0.545607
[246]	train-mlogloss:0.472593	val-mlogloss:0.545528
[247]	train-mlogloss:0.472184	val-mlogloss:0.545423
[248]	train-mlogloss:0.47187	val-mlogloss:0.545307
[249]	train-mlogloss:0.47159	val-mlogloss:0.545226
[250]	train-mlogloss:0.471295	val-mlogloss:0.545095
[251]	train-mlogloss:0.47101	val-mlogloss:0.544998
[252]	train-mlogloss:0.470636	val-mlogloss:0.544832
[253]	train-mlogloss:0.47021	val-mlogloss:0.544694
[254]	train-mlogloss:0.469853	val-mlogloss:0.54461
[255]	train-mlogloss:0.469462	val-mlogloss:0.544507
[256]	train-mlogloss:0.46914	val-mlogloss:0.544413
[257]	train-mlogloss:0.468804	val-mlogloss:0.544286
[258]	train-mlogloss:0.468397	val-mlogloss:0.544181
[259]	train-mlogloss:0.468127	val-mlogloss:0.544077
[260]	train-mlogloss:0.467721	val-mlogloss:0.543944
[261]	train-mlogloss:0.467431	val-mlogloss:0.543861
[262]	train-mlogloss:0.467097	val-mlogloss:0.543734
[263]	train-mlogloss:0.466649	val-mlogloss:0.54362
[264]	train-mlogloss:0.466319	val-mlogloss:0.543565
[265]	train-mlogloss:0.466038	val-mlogloss:0.54347
[266]	train-mlogloss:0.465789	val-mlogloss:0.543377
[267]	train-mlogloss:0.465552	val-mlogloss:0.543317
[268]	train-mlogloss:0.465254	val-mlogloss:0.543243
[269]	train-mlogloss:0.46486	val-mlogloss:0.543115
[270]	train-mlogloss:0.464542	val-mlogloss:0.543063
[271]	train-mlogloss:0.46418	val-mlogloss:0.542952
[272]	train-mlogloss:0.463808	val-mlogloss:0.54286
[273]	train-mlogloss:0.463554	val-mlogloss:0.542761
[274]	train-mlogloss:0.463225	val-mlogloss:0.542649
[275]	train-mlogloss:0.462911	val-mlogloss:0.542622
[276]	train-mlogloss:0.462535	val-mlogloss:0.542565
[277]	train-mlogloss:0.462119	val-mlogloss:0.542442
[278]	train-mlogloss:0.461796	val-mlogloss:0.5423
[279]	train-mlogloss:0.461461	val-mlogloss:0.542144
[280]	train-mlogloss:0.461159	val-mlogloss:0.542059
[281]	train-mlogloss:0.460812	val-mlogloss:0.541918
[282]	train-mlogloss:0.460579	val-mlogloss:0.541843
[283]	train-mlogloss:0.460363	val-mlogloss:0.541758
[284]	train-mlogloss:0.460093	val-mlogloss:0.541668
[285]	train-mlogloss:0.459731	val-mlogloss:0.541535
[286]	train-mlogloss:0.459363	val-mlogloss:0.541435
[287]	train-mlogloss:0.459009	val-mlogloss:0.54137
[288]	train-mlogloss:0.458676	val-mlogloss:0.541311
[289]	train-mlogloss:0.458402	val-mlogloss:0.541251
[290]	train-mlogloss:0.458103	val-mlogloss:0.541208
[291]	train-mlogloss:0.457762	val-mlogloss:0.541037
[292]	train-mlogloss:0.457407	val-mlogloss:0.54096
[293]	train-mlogloss:0.457017	val-mlogloss:0.540842
[294]	train-mlogloss:0.456715	val-mlogloss:0.54077
[295]	train-mlogloss:0.456397	val-mlogloss:0.540696
[296]	train-mlogloss:0.456079	val-mlogloss:0.540585
[297]	train-mlogloss:0.455779	val-mlogloss:0.540548
[298]	train-mlogloss:0.455386	val-mlogloss:0.540456
[299]	train-mlogloss:0.455043	val-mlogloss:0.540407
[300]	train-mlogloss:0.454687	val-mlogloss:0.540336
[301]	train-mlogloss:0.45428	val-mlogloss:0.540223
[302]	train-mlogloss:0.453945	val-mlogloss:0.540133
[303]	train-mlogloss:0.453579	val-mlogloss:0.540045
[304]	train-mlogloss:0.453307	val-mlogloss:0.539984
[305]	train-mlogloss:0.453065	val-mlogloss:0.539963
[306]	train-mlogloss:0.452725	val-mlogloss:0.539879
[307]	train-mlogloss:0.452364	val-mlogloss:0.539821
[308]	train-mlogloss:0.452084	val-mlogloss:0.539737
[309]	train-mlogloss:0.451849	val-mlogloss:0.539678
[310]	train-mlogloss:0.45156	val-mlogloss:0.539624
[311]	train-mlogloss:0.451261	val-mlogloss:0.539564
[312]	train-mlogloss:0.450995	val-mlogloss:0.53948
[313]	train-mlogloss:0.450611	val-mlogloss:0.539418
[314]	train-mlogloss:0.450279	val-mlogloss:0.539313
[315]	train-mlogloss:0.45004	val-mlogloss:0.53926
[316]	train-mlogloss:0.449769	val-mlogloss:0.539194
[317]	train-mlogloss:0.449576	val-mlogloss:0.539123
[318]	train-mlogloss:0.449175	val-mlogloss:0.539016
[319]	train-mlogloss:0.448813	val-mlogloss:0.538982
[320]	train-mlogloss:0.448496	val-mlogloss:0.538963
[321]	train-mlogloss:0.448132	val-mlogloss:0.538884
[322]	train-mlogloss:0.447928	val-mlogloss:0.538835
[323]	train-mlogloss:0.44768	val-mlogloss:0.53879
[324]	train-mlogloss:0.447367	val-mlogloss:0.538741
[325]	train-mlogloss:0.447095	val-mlogloss:0.53868
[326]	train-mlogloss:0.446774	val-mlogloss:0.538627
[327]	train-mlogloss:0.446428	val-mlogloss:0.538553
[328]	train-mlogloss:0.44627	val-mlogloss:0.538494
[329]	train-mlogloss:0.446015	val-mlogloss:0.538416
[330]	train-mlogloss:0.445811	val-mlogloss:0.538367
[331]	train-mlogloss:0.445565	val-mlogloss:0.538347
[332]	train-mlogloss:0.445294	val-mlogloss:0.538286
[333]	train-mlogloss:0.445023	val-mlogloss:0.538221
[334]	train-mlogloss:0.444764	val-mlogloss:0.538147
[335]	train-mlogloss:0.444532	val-mlogloss:0.53808
[336]	train-mlogloss:0.444238	val-mlogloss:0.537991
[337]	train-mlogloss:0.443995	val-mlogloss:0.537953
[338]	train-mlogloss:0.443831	val-mlogloss:0.537879
[339]	train-mlogloss:0.44351	val-mlogloss:0.53784
[340]	train-mlogloss:0.443308	val-mlogloss:0.53779
[341]	train-mlogloss:0.443016	val-mlogloss:0.537758
[342]	train-mlogloss:0.442735	val-mlogloss:0.537691
[343]	train-mlogloss:0.442558	val-mlogloss:0.53763
[344]	train-mlogloss:0.442185	val-mlogloss:0.537551
[345]	train-mlogloss:0.441962	val-mlogloss:0.537437
[346]	train-mlogloss:0.441659	val-mlogloss:0.537384
[347]	train-mlogloss:0.441308	val-mlogloss:0.537321
[348]	train-mlogloss:0.44111	val-mlogloss:0.537239
[349]	train-mlogloss:0.440823	val-mlogloss:0.537207
[350]	train-mlogloss:0.440558	val-mlogloss:0.537143
[351]	train-mlogloss:0.440308	val-mlogloss:0.537104
[352]	train-mlogloss:0.440112	val-mlogloss:0.537029
[353]	train-mlogloss:0.439805	val-mlogloss:0.536989
[354]	train-mlogloss:0.43956	val-mlogloss:0.536949
[355]	train-mlogloss:0.439208	val-mlogloss:0.536934
[356]	train-mlogloss:0.438952	val-mlogloss:0.536885
[357]	train-mlogloss:0.438637	val-mlogloss:0.536814
[358]	train-mlogloss:0.438343	val-mlogloss:0.536763
[359]	train-mlogloss:0.437997	val-mlogloss:0.536712
[360]	train-mlogloss:0.437799	val-mlogloss:0.536677
[361]	train-mlogloss:0.437511	val-mlogloss:0.536632
[362]	train-mlogloss:0.437185	val-mlogloss:0.536547
[363]	train-mlogloss:0.436929	val-mlogloss:0.536505
[364]	train-mlogloss:0.43672	val-mlogloss:0.536451
[365]	train-mlogloss:0.43636	val-mlogloss:0.536373
[366]	train-mlogloss:0.4361	val-mlogloss:0.536341
[367]	train-mlogloss:0.435928	val-mlogloss:0.536287
[368]	train-mlogloss:0.435741	val-mlogloss:0.536224
[369]	train-mlogloss:0.435478	val-mlogloss:0.53615
[370]	train-mlogloss:0.435184	val-mlogloss:0.5361
[371]	train-mlogloss:0.434867	val-mlogloss:0.535991
[372]	train-mlogloss:0.434578	val-mlogloss:0.535944
[373]	train-mlogloss:0.434356	val-mlogloss:0.53593
[374]	train-mlogloss:0.43404	val-mlogloss:0.535902
[375]	train-mlogloss:0.433809	val-mlogloss:0.535856
[376]	train-mlogloss:0.433654	val-mlogloss:0.535845
[377]	train-mlogloss:0.433404	val-mlogloss:0.535784
[378]	train-mlogloss:0.433131	val-mlogloss:0.535785
[379]	train-mlogloss:0.432877	val-mlogloss:0.535702
[380]	train-mlogloss:0.432578	val-mlogloss:0.535667
[381]	train-mlogloss:0.432299	val-mlogloss:0.535601
[382]	train-mlogloss:0.432055	val-mlogloss:0.535538
[383]	train-mlogloss:0.431781	val-mlogloss:0.535546
[384]	train-mlogloss:0.431458	val-mlogloss:0.535533
[385]	train-mlogloss:0.431175	val-mlogloss:0.535453
[386]	train-mlogloss:0.430979	val-mlogloss:0.535404
[387]	train-mlogloss:0.430732	val-mlogloss:0.535386
[388]	train-mlogloss:0.430448	val-mlogloss:0.535316
[389]	train-mlogloss:0.430137	val-mlogloss:0.535231
[390]	train-mlogloss:0.429851	val-mlogloss:0.535158
[391]	train-mlogloss:0.429588	val-mlogloss:0.535117
[392]	train-mlogloss:0.429345	val-mlogloss:0.535109
[393]	train-mlogloss:0.429112	val-mlogloss:0.535071
[394]	train-mlogloss:0.428832	val-mlogloss:0.535046
[395]	train-mlogloss:0.428655	val-mlogloss:0.535
[396]	train-mlogloss:0.428389	val-mlogloss:0.534945
[397]	train-mlogloss:0.42819	val-mlogloss:0.534875
[398]	train-mlogloss:0.427943	val-mlogloss:0.534877
[399]	train-mlogloss:0.427829	val-mlogloss:0.534862
[400]	train-mlogloss:0.427524	val-mlogloss:0.534772
[401]	train-mlogloss:0.42728	val-mlogloss:0.534726
[402]	train-mlogloss:0.426957	val-mlogloss:0.534671
[403]	train-mlogloss:0.426716	val-mlogloss:0.53464
[404]	train-mlogloss:0.426497	val-mlogloss:0.534581
[405]	train-mlogloss:0.426353	val-mlogloss:0.534555
[406]	train-mlogloss:0.426098	val-mlogloss:0.534506
[407]	train-mlogloss:0.425769	val-mlogloss:0.534445
[408]	train-mlogloss:0.425562	val-mlogloss:0.53437
[409]	train-mlogloss:0.425396	val-mlogloss:0.534355
[410]	train-mlogloss:0.425141	val-mlogloss:0.534271
[411]	train-mlogloss:0.424841	val-mlogloss:0.534211
[412]	train-mlogloss:0.424522	val-mlogloss:0.534218
[413]	train-mlogloss:0.424295	val-mlogloss:0.534175
[414]	train-mlogloss:0.424096	val-mlogloss:0.534136
[415]	train-mlogloss:0.423764	val-mlogloss:0.534045
[416]	train-mlogloss:0.423606	val-mlogloss:0.534031
[417]	train-mlogloss:0.423327	val-mlogloss:0.534046
[418]	train-mlogloss:0.423182	val-mlogloss:0.534032
[419]	train-mlogloss:0.422917	val-mlogloss:0.534018
[420]	train-mlogloss:0.422686	val-mlogloss:0.534
[421]	train-mlogloss:0.42245	val-mlogloss:0.533949
[422]	train-mlogloss:0.422192	val-mlogloss:0.533943
[423]	train-mlogloss:0.42204	val-mlogloss:0.533931
[424]	train-mlogloss:0.421715	val-mlogloss:0.533869
[425]	train-mlogloss:0.421478	val-mlogloss:0.533834
[426]	train-mlogloss:0.42122	val-mlogloss:0.533801
[427]	train-mlogloss:0.420978	val-mlogloss:0.533805
[428]	train-mlogloss:0.420769	val-mlogloss:0.533801
[429]	train-mlogloss:0.420592	val-mlogloss:0.533789
[430]	train-mlogloss:0.420455	val-mlogloss:0.533789
[431]	train-mlogloss:0.420253	val-mlogloss:0.53375
[432]	train-mlogloss:0.420097	val-mlogloss:0.533744
[433]	train-mlogloss:0.419868	val-mlogloss:0.533682
[434]	train-mlogloss:0.419688	val-mlogloss:0.533658
[435]	train-mlogloss:0.419406	val-mlogloss:0.533604
[436]	train-mlogloss:0.419159	val-mlogloss:0.533588
[437]	train-mlogloss:0.41894	val-mlogloss:0.533565
[438]	train-mlogloss:0.418655	val-mlogloss:0.533498
[439]	train-mlogloss:0.418377	val-mlogloss:0.533461
[440]	train-mlogloss:0.418175	val-mlogloss:0.533449
[441]	train-mlogloss:0.417855	val-mlogloss:0.533438
[442]	train-mlogloss:0.417564	val-mlogloss:0.533429
[443]	train-mlogloss:0.417247	val-mlogloss:0.53337
[444]	train-mlogloss:0.417002	val-mlogloss:0.533365
[445]	train-mlogloss:0.416743	val-mlogloss:0.533282
[446]	train-mlogloss:0.416421	val-mlogloss:0.533248
[447]	train-mlogloss:0.416184	val-mlogloss:0.533246
[448]	train-mlogloss:0.416009	val-mlogloss:0.533226
[449]	train-mlogloss:0.415769	val-mlogloss:0.533183
[450]	train-mlogloss:0.41555	val-mlogloss:0.533136
[451]	train-mlogloss:0.415343	val-mlogloss:0.533133
[452]	train-mlogloss:0.415136	val-mlogloss:0.533109
[453]	train-mlogloss:0.414861	val-mlogloss:0.533087
[454]	train-mlogloss:0.414589	val-mlogloss:0.533011
[455]	train-mlogloss:0.414389	val-mlogloss:0.532992
[456]	train-mlogloss:0.414187	val-mlogloss:0.532975
[457]	train-mlogloss:0.414	val-mlogloss:0.53296
[458]	train-mlogloss:0.413756	val-mlogloss:0.532895
[459]	train-mlogloss:0.413521	val-mlogloss:0.532848
[460]	train-mlogloss:0.413318	val-mlogloss:0.532776
[461]	train-mlogloss:0.413095	val-mlogloss:0.532711
[462]	train-mlogloss:0.412853	val-mlogloss:0.532718
[463]	train-mlogloss:0.412634	val-mlogloss:0.532664
[464]	train-mlogloss:0.412453	val-mlogloss:0.532655
[465]	train-mlogloss:0.412306	val-mlogloss:0.532597
[466]	train-mlogloss:0.412141	val-mlogloss:0.532574
[467]	train-mlogloss:0.41194	val-mlogloss:0.532547
[468]	train-mlogloss:0.411752	val-mlogloss:0.532494
[469]	train-mlogloss:0.411429	val-mlogloss:0.532425
[470]	train-mlogloss:0.411189	val-mlogloss:0.532415
[471]	train-mlogloss:0.410952	val-mlogloss:0.5324
[472]	train-mlogloss:0.410726	val-mlogloss:0.53232
[473]	train-mlogloss:0.410522	val-mlogloss:0.532276
[474]	train-mlogloss:0.410324	val-mlogloss:0.532265
[475]	train-mlogloss:0.410035	val-mlogloss:0.532188
[476]	train-mlogloss:0.409816	val-mlogloss:0.532178
[477]	train-mlogloss:0.409513	val-mlogloss:0.532159
[478]	train-mlogloss:0.40937	val-mlogloss:0.532126
[479]	train-mlogloss:0.409043	val-mlogloss:0.53213
[480]	train-mlogloss:0.408832	val-mlogloss:0.532091
[481]	train-mlogloss:0.408611	val-mlogloss:0.532069
[482]	train-mlogloss:0.408412	val-mlogloss:0.532019
[483]	train-mlogloss:0.408189	val-mlogloss:0.531997
[484]	train-mlogloss:0.407946	val-mlogloss:0.531962
[485]	train-mlogloss:0.407753	val-mlogloss:0.531951
[486]	train-mlogloss:0.40755	val-mlogloss:0.531946
[487]	train-mlogloss:0.407364	val-mlogloss:0.531878
[488]	train-mlogloss:0.407143	val-mlogloss:0.531863
[489]	train-mlogloss:0.40687	val-mlogloss:0.531819
[490]	train-mlogloss:0.406588	val-mlogloss:0.531811
[491]	train-mlogloss:0.406355	val-mlogloss:0.531828
[492]	train-mlogloss:0.406157	val-mlogloss:0.531797
[493]	train-mlogloss:0.405944	val-mlogloss:0.531789
[494]	train-mlogloss:0.405757	val-mlogloss:0.531758
[495]	train-mlogloss:0.405561	val-mlogloss:0.531731
[496]	train-mlogloss:0.405301	val-mlogloss:0.531693
[497]	train-mlogloss:0.405095	val-mlogloss:0.531682
[498]	train-mlogloss:0.404875	val-mlogloss:0.531668
[499]	train-mlogloss:0.404655	val-mlogloss:0.531641
[500]	train-mlogloss:0.404423	val-mlogloss:0.531624
[501]	train-mlogloss:0.404156	val-mlogloss:0.531606
[502]	train-mlogloss:0.403947	val-mlogloss:0.531612
[503]	train-mlogloss:0.403679	val-mlogloss:0.53151
[504]	train-mlogloss:0.403419	val-mlogloss:0.531485
[505]	train-mlogloss:0.403181	val-mlogloss:0.53144
[506]	train-mlogloss:0.402987	val-mlogloss:0.53142
[507]	train-mlogloss:0.402872	val-mlogloss:0.531429
[508]	train-mlogloss:0.402723	val-mlogloss:0.531376
[509]	train-mlogloss:0.402528	val-mlogloss:0.531387
[510]	train-mlogloss:0.402297	val-mlogloss:0.531373
[511]	train-mlogloss:0.402014	val-mlogloss:0.531306
[512]	train-mlogloss:0.401777	val-mlogloss:0.531286
[513]	train-mlogloss:0.40157	val-mlogloss:0.531286
[514]	train-mlogloss:0.40136	val-mlogloss:0.531247
[515]	train-mlogloss:0.401197	val-mlogloss:0.531241
[516]	train-mlogloss:0.401028	val-mlogloss:0.531217
[517]	train-mlogloss:0.400765	val-mlogloss:0.531204
[518]	train-mlogloss:0.400555	val-mlogloss:0.531159
[519]	train-mlogloss:0.400368	val-mlogloss:0.53116
[520]	train-mlogloss:0.400153	val-mlogloss:0.531171
[521]	train-mlogloss:0.399932	val-mlogloss:0.53118
[522]	train-mlogloss:0.399702	val-mlogloss:0.531141
[523]	train-mlogloss:0.399565	val-mlogloss:0.531115
[524]	train-mlogloss:0.399366	val-mlogloss:0.531106
[525]	train-mlogloss:0.399205	val-mlogloss:0.531092
[526]	train-mlogloss:0.399014	val-mlogloss:0.531095
[527]	train-mlogloss:0.398763	val-mlogloss:0.531026
[528]	train-mlogloss:0.398561	val-mlogloss:0.531033
[529]	train-mlogloss:0.398414	val-mlogloss:0.531041
[530]	train-mlogloss:0.398167	val-mlogloss:0.531032
[531]	train-mlogloss:0.397938	val-mlogloss:0.531025
[532]	train-mlogloss:0.397734	val-mlogloss:0.531015
[533]	train-mlogloss:0.397522	val-mlogloss:0.530998
[534]	train-mlogloss:0.397236	val-mlogloss:0.530952
[535]	train-mlogloss:0.397054	val-mlogloss:0.530917
[536]	train-mlogloss:0.396906	val-mlogloss:0.530905
[537]	train-mlogloss:0.396737	val-mlogloss:0.530888
[538]	train-mlogloss:0.396607	val-mlogloss:0.530883
[539]	train-mlogloss:0.396419	val-mlogloss:0.530867
[540]	train-mlogloss:0.396192	val-mlogloss:0.530806
[541]	train-mlogloss:0.39599	val-mlogloss:0.530797
[542]	train-mlogloss:0.39582	val-mlogloss:0.530771
[543]	train-mlogloss:0.395668	val-mlogloss:0.530749
[544]	train-mlogloss:0.395367	val-mlogloss:0.530769
[545]	train-mlogloss:0.395172	val-mlogloss:0.530728
[546]	train-mlogloss:0.394999	val-mlogloss:0.530702
[547]	train-mlogloss:0.394794	val-mlogloss:0.530706
[548]	train-mlogloss:0.394564	val-mlogloss:0.530673
[549]	train-mlogloss:0.394319	val-mlogloss:0.530639
[550]	train-mlogloss:0.394157	val-mlogloss:0.530644
[551]	train-mlogloss:0.393918	val-mlogloss:0.53064
[552]	train-mlogloss:0.393697	val-mlogloss:0.530613
[553]	train-mlogloss:0.393492	val-mlogloss:0.530629
[554]	train-mlogloss:0.393203	val-mlogloss:0.530603
[555]	train-mlogloss:0.393007	val-mlogloss:0.530554
[556]	train-mlogloss:0.392802	val-mlogloss:0.530522
[557]	train-mlogloss:0.392547	val-mlogloss:0.530531
[558]	train-mlogloss:0.39229	val-mlogloss:0.530543
[559]	train-mlogloss:0.39206	val-mlogloss:0.530514
[560]	train-mlogloss:0.391857	val-mlogloss:0.530515
[561]	train-mlogloss:0.391595	val-mlogloss:0.530499
[562]	train-mlogloss:0.391351	val-mlogloss:0.530458
[563]	train-mlogloss:0.391091	val-mlogloss:0.53043
[564]	train-mlogloss:0.390872	val-mlogloss:0.530447
[565]	train-mlogloss:0.390734	val-mlogloss:0.530404
[566]	train-mlogloss:0.390515	val-mlogloss:0.530397
[567]	train-mlogloss:0.390333	val-mlogloss:0.530425
[568]	train-mlogloss:0.390143	val-mlogloss:0.530416
[569]	train-mlogloss:0.390033	val-mlogloss:0.530377
[570]	train-mlogloss:0.389804	val-mlogloss:0.530354
[571]	train-mlogloss:0.389614	val-mlogloss:0.530382
[572]	train-mlogloss:0.389426	val-mlogloss:0.530379
[573]	train-mlogloss:0.389216	val-mlogloss:0.530344
[574]	train-mlogloss:0.389022	val-mlogloss:0.530322
[575]	train-mlogloss:0.388884	val-mlogloss:0.53029
[576]	train-mlogloss:0.388637	val-mlogloss:0.530232
[577]	train-mlogloss:0.388452	val-mlogloss:0.530193
[578]	train-mlogloss:0.38828	val-mlogloss:0.530221
[579]	train-mlogloss:0.388064	val-mlogloss:0.530238
[580]	train-mlogloss:0.387827	val-mlogloss:0.530247
[581]	train-mlogloss:0.38763	val-mlogloss:0.530248
[582]	train-mlogloss:0.387348	val-mlogloss:0.530245
[583]	train-mlogloss:0.387184	val-mlogloss:0.530226
[584]	train-mlogloss:0.386957	val-mlogloss:0.530228
[585]	train-mlogloss:0.386798	val-mlogloss:0.530238
[586]	train-mlogloss:0.386608	val-mlogloss:0.530222
[587]	train-mlogloss:0.386444	val-mlogloss:0.530194
[588]	train-mlogloss:0.386247	val-mlogloss:0.530204
[589]	train-mlogloss:0.386073	val-mlogloss:0.530159
[590]	train-mlogloss:0.385893	val-mlogloss:0.530175
[591]	train-mlogloss:0.385691	val-mlogloss:0.530156
[592]	train-mlogloss:0.385514	val-mlogloss:0.53016
[593]	train-mlogloss:0.385239	val-mlogloss:0.530152
[594]	train-mlogloss:0.385036	val-mlogloss:0.530185
[595]	train-mlogloss:0.384858	val-mlogloss:0.530168
[596]	train-mlogloss:0.384656	val-mlogloss:0.530096
[597]	train-mlogloss:0.384493	val-mlogloss:0.530086
[598]	train-mlogloss:0.38432	val-mlogloss:0.530057
[599]	train-mlogloss:0.38414	val-mlogloss:0.530073
[600]	train-mlogloss:0.383909	val-mlogloss:0.530039
[601]	train-mlogloss:0.383671	val-mlogloss:0.530017
[602]	train-mlogloss:0.383475	val-mlogloss:0.529994
[603]	train-mlogloss:0.383325	val-mlogloss:0.529974
[604]	train-mlogloss:0.383128	val-mlogloss:0.52995
[605]	train-mlogloss:0.382963	val-mlogloss:0.529941
[606]	train-mlogloss:0.382738	val-mlogloss:0.529889
[607]	train-mlogloss:0.382544	val-mlogloss:0.529907
[608]	train-mlogloss:0.382432	val-mlogloss:0.529903
[609]	train-mlogloss:0.382289	val-mlogloss:0.529901
[610]	train-mlogloss:0.382119	val-mlogloss:0.529899
[611]	train-mlogloss:0.38187	val-mlogloss:0.529898
[612]	train-mlogloss:0.381661	val-mlogloss:0.529876
[613]	train-mlogloss:0.381422	val-mlogloss:0.529891
[614]	train-mlogloss:0.38118	val-mlogloss:0.529905
[615]	train-mlogloss:0.380944	val-mlogloss:0.529842
[616]	train-mlogloss:0.380727	val-mlogloss:0.529825
[617]	train-mlogloss:0.380616	val-mlogloss:0.52979
[618]	train-mlogloss:0.380401	val-mlogloss:0.529761
[619]	train-mlogloss:0.380229	val-mlogloss:0.52971
[620]	train-mlogloss:0.380046	val-mlogloss:0.529724
[621]	train-mlogloss:0.379836	val-mlogloss:0.529726
[622]	train-mlogloss:0.379612	val-mlogloss:0.529689
[623]	train-mlogloss:0.379497	val-mlogloss:0.529688
[624]	train-mlogloss:0.379231	val-mlogloss:0.529676
[625]	train-mlogloss:0.379045	val-mlogloss:0.529673
[626]	train-mlogloss:0.378807	val-mlogloss:0.52968
[627]	train-mlogloss:0.378529	val-mlogloss:0.529664
[628]	train-mlogloss:0.378299	val-mlogloss:0.529658
[629]	train-mlogloss:0.378087	val-mlogloss:0.529632
[630]	train-mlogloss:0.377876	val-mlogloss:0.529631
[631]	train-mlogloss:0.377697	val-mlogloss:0.529626
[632]	train-mlogloss:0.377498	val-mlogloss:0.529625
[633]	train-mlogloss:0.377302	val-mlogloss:0.529676
[634]	train-mlogloss:0.377132	val-mlogloss:0.529708
[635]	train-mlogloss:0.376929	val-mlogloss:0.529678
[636]	train-mlogloss:0.37679	val-mlogloss:0.529727
[637]	train-mlogloss:0.376566	val-mlogloss:0.529689
[638]	train-mlogloss:0.376372	val-mlogloss:0.529682
[639]	train-mlogloss:0.376172	val-mlogloss:0.529669
[640]	train-mlogloss:0.376043	val-mlogloss:0.529663
[641]	train-mlogloss:0.375908	val-mlogloss:0.529687
[642]	train-mlogloss:0.375659	val-mlogloss:0.529673
[643]	train-mlogloss:0.375429	val-mlogloss:0.529695
[644]	train-mlogloss:0.375214	val-mlogloss:0.529685
[645]	train-mlogloss:0.375015	val-mlogloss:0.529659
[646]	train-mlogloss:0.374775	val-mlogloss:0.529628
[647]	train-mlogloss:0.374612	val-mlogloss:0.529571
[648]	train-mlogloss:0.374419	val-mlogloss:0.529566
[649]	train-mlogloss:0.374168	val-mlogloss:0.529542
[650]	train-mlogloss:0.373975	val-mlogloss:0.52954
[651]	train-mlogloss:0.3738	val-mlogloss:0.529513
[652]	train-mlogloss:0.373584	val-mlogloss:0.529524
[653]	train-mlogloss:0.373464	val-mlogloss:0.529504
[654]	train-mlogloss:0.373279	val-mlogloss:0.52948
[655]	train-mlogloss:0.373151	val-mlogloss:0.52945
[656]	train-mlogloss:0.372989	val-mlogloss:0.52947
[657]	train-mlogloss:0.37276	val-mlogloss:0.529494
[658]	train-mlogloss:0.372638	val-mlogloss:0.529477
[659]	train-mlogloss:0.37256	val-mlogloss:0.529462
[660]	train-mlogloss:0.372315	val-mlogloss:0.529415
[661]	train-mlogloss:0.372138	val-mlogloss:0.52945
[662]	train-mlogloss:0.371959	val-mlogloss:0.52944
[663]	train-mlogloss:0.371763	val-mlogloss:0.529424
[664]	train-mlogloss:0.371537	val-mlogloss:0.529407
[665]	train-mlogloss:0.371319	val-mlogloss:0.529363
[666]	train-mlogloss:0.371145	val-mlogloss:0.529378
[667]	train-mlogloss:0.370931	val-mlogloss:0.529362
[668]	train-mlogloss:0.370743	val-mlogloss:0.529359
[669]	train-mlogloss:0.370598	val-mlogloss:0.529348
[670]	train-mlogloss:0.370409	val-mlogloss:0.529365
[671]	train-mlogloss:0.370149	val-mlogloss:0.529368
[672]	train-mlogloss:0.369952	val-mlogloss:0.529381
[673]	train-mlogloss:0.369786	val-mlogloss:0.529368
[674]	train-mlogloss:0.369608	val-mlogloss:0.529356
[675]	train-mlogloss:0.369461	val-mlogloss:0.529339
[676]	train-mlogloss:0.36931	val-mlogloss:0.529349
[677]	train-mlogloss:0.36913	val-mlogloss:0.529343
[678]	train-mlogloss:0.36891	val-mlogloss:0.529345
[679]	train-mlogloss:0.368704	val-mlogloss:0.529358
[680]	train-mlogloss:0.368531	val-mlogloss:0.52935
[681]	train-mlogloss:0.368413	val-mlogloss:0.52933
[682]	train-mlogloss:0.368216	val-mlogloss:0.529298
[683]	train-mlogloss:0.367952	val-mlogloss:0.529291
[684]	train-mlogloss:0.367722	val-mlogloss:0.529306
[685]	train-mlogloss:0.367601	val-mlogloss:0.529319
[686]	train-mlogloss:0.367432	val-mlogloss:0.529307
[687]	train-mlogloss:0.367195	val-mlogloss:0.529288
[688]	train-mlogloss:0.367103	val-mlogloss:0.529289
[689]	train-mlogloss:0.366898	val-mlogloss:0.529315
[690]	train-mlogloss:0.366684	val-mlogloss:0.529292
[691]	train-mlogloss:0.366461	val-mlogloss:0.529268
[692]	train-mlogloss:0.36631	val-mlogloss:0.529277
[693]	train-mlogloss:0.366094	val-mlogloss:0.529265
[694]	train-mlogloss:0.365915	val-mlogloss:0.529273
[695]	train-mlogloss:0.365717	val-mlogloss:0.52925
[696]	train-mlogloss:0.365562	val-mlogloss:0.529238
[697]	train-mlogloss:0.365385	val-mlogloss:0.529241
[698]	train-mlogloss:0.365206	val-mlogloss:0.529237
[699]	train-mlogloss:0.365054	val-mlogloss:0.529257
[700]	train-mlogloss:0.364907	val-mlogloss:0.529241
[701]	train-mlogloss:0.364688	val-mlogloss:0.529187
[702]	train-mlogloss:0.364514	val-mlogloss:0.529172
[703]	train-mlogloss:0.364342	val-mlogloss:0.529164
[704]	train-mlogloss:0.364103	val-mlogloss:0.529168
[705]	train-mlogloss:0.363972	val-mlogloss:0.529154
[706]	train-mlogloss:0.363757	val-mlogloss:0.529141
[707]	train-mlogloss:0.363573	val-mlogloss:0.529122
[708]	train-mlogloss:0.36335	val-mlogloss:0.529159
[709]	train-mlogloss:0.363125	val-mlogloss:0.529157
[710]	train-mlogloss:0.362945	val-mlogloss:0.529181
[711]	train-mlogloss:0.362815	val-mlogloss:0.529197
[712]	train-mlogloss:0.362601	val-mlogloss:0.529202
[713]	train-mlogloss:0.362407	val-mlogloss:0.529183
[714]	train-mlogloss:0.362183	val-mlogloss:0.529178
[715]	train-mlogloss:0.36202	val-mlogloss:0.529169
[716]	train-mlogloss:0.361778	val-mlogloss:0.529171
[717]	train-mlogloss:0.361612	val-mlogloss:0.529144
[718]	train-mlogloss:0.361449	val-mlogloss:0.529155
[719]	train-mlogloss:0.36136	val-mlogloss:0.529149
[720]	train-mlogloss:0.361224	val-mlogloss:0.529136
[721]	train-mlogloss:0.361056	val-mlogloss:0.529132
[722]	train-mlogloss:0.360881	val-mlogloss:0.529145
[723]	train-mlogloss:0.360727	val-mlogloss:0.529104
[724]	train-mlogloss:0.360473	val-mlogloss:0.529148
[725]	train-mlogloss:0.360269	val-mlogloss:0.529119
[726]	train-mlogloss:0.360047	val-mlogloss:0.529152
[727]	train-mlogloss:0.359877	val-mlogloss:0.529181
[728]	train-mlogloss:0.359777	val-mlogloss:0.529179
[729]	train-mlogloss:0.359586	val-mlogloss:0.529144
[730]	train-mlogloss:0.359404	val-mlogloss:0.529153
[731]	train-mlogloss:0.359293	val-mlogloss:0.529151
[732]	train-mlogloss:0.359113	val-mlogloss:0.529137
[733]	train-mlogloss:0.358993	val-mlogloss:0.529166
[734]	train-mlogloss:0.35883	val-mlogloss:0.529117
[735]	train-mlogloss:0.358629	val-mlogloss:0.529138
[736]	train-mlogloss:0.358501	val-mlogloss:0.529165
[737]	train-mlogloss:0.358291	val-mlogloss:0.529189
[738]	train-mlogloss:0.358071	val-mlogloss:0.529162
[739]	train-mlogloss:0.357888	val-mlogloss:0.529166
[740]	train-mlogloss:0.357744	val-mlogloss:0.529185
[741]	train-mlogloss:0.357603	val-mlogloss:0.529169
[742]	train-mlogloss:0.357448	val-mlogloss:0.529176
[743]	train-mlogloss:0.357265	val-mlogloss:0.529139
[744]	train-mlogloss:0.357085	val-mlogloss:0.529128
[745]	train-mlogloss:0.356913	val-mlogloss:0.529118
[746]	train-mlogloss:0.35672	val-mlogloss:0.529134
[747]	train-mlogloss:0.356532	val-mlogloss:0.529138
[748]	train-mlogloss:0.356352	val-mlogloss:0.52911
[749]	train-mlogloss:0.356153	val-mlogloss:0.529111
[750]	train-mlogloss:0.355955	val-mlogloss:0.529089
[751]	train-mlogloss:0.355712	val-mlogloss:0.529106
[752]	train-mlogloss:0.355526	val-mlogloss:0.529127
[753]	train-mlogloss:0.355354	val-mlogloss:0.529107
[754]	train-mlogloss:0.355214	val-mlogloss:0.529085
[755]	train-mlogloss:0.355064	val-mlogloss:0.529045
[756]	train-mlogloss:0.354871	val-mlogloss:0.529036
[757]	train-mlogloss:0.354734	val-mlogloss:0.528979
[758]	train-mlogloss:0.354505	val-mlogloss:0.528989
[759]	train-mlogloss:0.354327	val-mlogloss:0.528991
[760]	train-mlogloss:0.354165	val-mlogloss:0.528962
[761]	train-mlogloss:0.354012	val-mlogloss:0.528943
[762]	train-mlogloss:0.353801	val-mlogloss:0.528932
[763]	train-mlogloss:0.35365	val-mlogloss:0.528921
[764]	train-mlogloss:0.353535	val-mlogloss:0.528955
[765]	train-mlogloss:0.353288	val-mlogloss:0.528984
[766]	train-mlogloss:0.35313	val-mlogloss:0.528997
[767]	train-mlogloss:0.35293	val-mlogloss:0.528972
[768]	train-mlogloss:0.352771	val-mlogloss:0.528967
[769]	train-mlogloss:0.352641	val-mlogloss:0.528992
[770]	train-mlogloss:0.352429	val-mlogloss:0.528965
[771]	train-mlogloss:0.352235	val-mlogloss:0.528982
[772]	train-mlogloss:0.352075	val-mlogloss:0.528977
[773]	train-mlogloss:0.351888	val-mlogloss:0.52899
[774]	train-mlogloss:0.351782	val-mlogloss:0.528986
[775]	train-mlogloss:0.351638	val-mlogloss:0.528985
[776]	train-mlogloss:0.351485	val-mlogloss:0.528963
[777]	train-mlogloss:0.351332	val-mlogloss:0.528939
[778]	train-mlogloss:0.351145	val-mlogloss:0.528913
[779]	train-mlogloss:0.350988	val-mlogloss:0.528931
[780]	train-mlogloss:0.350829	val-mlogloss:0.528933
[781]	train-mlogloss:0.350716	val-mlogloss:0.528919
[782]	train-mlogloss:0.35055	val-mlogloss:0.528924
[783]	train-mlogloss:0.350412	val-mlogloss:0.528904
[784]	train-mlogloss:0.35023	val-mlogloss:0.528927
[785]	train-mlogloss:0.350066	val-mlogloss:0.528931
[786]	train-mlogloss:0.349956	val-mlogloss:0.528933
[787]	train-mlogloss:0.349845	val-mlogloss:0.528919
[788]	train-mlogloss:0.349676	val-mlogloss:0.528895
[789]	train-mlogloss:0.349535	val-mlogloss:0.528889
[790]	train-mlogloss:0.349377	val-mlogloss:0.528872
[791]	train-mlogloss:0.349213	val-mlogloss:0.528879
[792]	train-mlogloss:0.349071	val-mlogloss:0.528883
[793]	train-mlogloss:0.348935	val-mlogloss:0.528916
[794]	train-mlogloss:0.348808	val-mlogloss:0.528907
[795]	train-mlogloss:0.348667	val-mlogloss:0.528929
[796]	train-mlogloss:0.348498	val-mlogloss:0.528895
[797]	train-mlogloss:0.348315	val-mlogloss:0.528914
[798]	train-mlogloss:0.348117	val-mlogloss:0.5289
[799]	train-mlogloss:0.34794	val-mlogloss:0.528922
[800]	train-mlogloss:0.347794	val-mlogloss:0.528917
[801]	train-mlogloss:0.347595	val-mlogloss:0.528932
[802]	train-mlogloss:0.347467	val-mlogloss:0.528934
[803]	train-mlogloss:0.347275	val-mlogloss:0.528948
[804]	train-mlogloss:0.347181	val-mlogloss:0.528952
[805]	train-mlogloss:0.347061	val-mlogloss:0.528942
[806]	train-mlogloss:0.3469	val-mlogloss:0.528919
[807]	train-mlogloss:0.346684	val-mlogloss:0.52888
[808]	train-mlogloss:0.346548	val-mlogloss:0.528875
[809]	train-mlogloss:0.34638	val-mlogloss:0.528848
[810]	train-mlogloss:0.346187	val-mlogloss:0.528817
[811]	train-mlogloss:0.346078	val-mlogloss:0.528808
[812]	train-mlogloss:0.345931	val-mlogloss:0.528806
[813]	train-mlogloss:0.345747	val-mlogloss:0.528849
[814]	train-mlogloss:0.345546	val-mlogloss:0.528837
[815]	train-mlogloss:0.345336	val-mlogloss:0.528836
[816]	train-mlogloss:0.345191	val-mlogloss:0.528849
[817]	train-mlogloss:0.345036	val-mlogloss:0.528849
[818]	train-mlogloss:0.344858	val-mlogloss:0.528857
[819]	train-mlogloss:0.344748	val-mlogloss:0.528871
[820]	train-mlogloss:0.344569	val-mlogloss:0.528851
[821]	train-mlogloss:0.344432	val-mlogloss:0.528881
[822]	train-mlogloss:0.344269	val-mlogloss:0.528898
[823]	train-mlogloss:0.344124	val-mlogloss:0.528891
[824]	train-mlogloss:0.343996	val-mlogloss:0.528878
[825]	train-mlogloss:0.343793	val-mlogloss:0.528877
[826]	train-mlogloss:0.343683	val-mlogloss:0.528879
[827]	train-mlogloss:0.343515	val-mlogloss:0.528899
[828]	train-mlogloss:0.343347	val-mlogloss:0.528939
[829]	train-mlogloss:0.343194	val-mlogloss:0.528944
[830]	train-mlogloss:0.343014	val-mlogloss:0.52897
[831]	train-mlogloss:0.342872	val-mlogloss:0.528954
[832]	train-mlogloss:0.342719	val-mlogloss:0.528967
[833]	train-mlogloss:0.342546	val-mlogloss:0.529004
[834]	train-mlogloss:0.342424	val-mlogloss:0.529021
[835]	train-mlogloss:0.342271	val-mlogloss:0.529062
[836]	train-mlogloss:0.342078	val-mlogloss:0.529077
[837]	train-mlogloss:0.341906	val-mlogloss:0.529063
[838]	train-mlogloss:0.341761	val-mlogloss:0.529085
[839]	train-mlogloss:0.341572	val-mlogloss:0.52909
[840]	train-mlogloss:0.341412	val-mlogloss:0.529101
[841]	train-mlogloss:0.341252	val-mlogloss:0.529133
[842]	train-mlogloss:0.341154	val-mlogloss:0.52911
[843]	train-mlogloss:0.341	val-mlogloss:0.529061
[844]	train-mlogloss:0.340813	val-mlogloss:0.529042
[845]	train-mlogloss:0.340673	val-mlogloss:0.529046
[846]	train-mlogloss:0.340509	val-mlogloss:0.529041
[847]	train-mlogloss:0.340348	val-mlogloss:0.529069
[848]	train-mlogloss:0.340182	val-mlogloss:0.529056
[849]	train-mlogloss:0.340047	val-mlogloss:0.529058
[850]	train-mlogloss:0.339936	val-mlogloss:0.529047
[851]	train-mlogloss:0.339801	val-mlogloss:0.529016
[852]	train-mlogloss:0.339628	val-mlogloss:0.52904
[853]	train-mlogloss:0.339452	val-mlogloss:0.529004
[854]	train-mlogloss:0.339274	val-mlogloss:0.52898
[855]	train-mlogloss:0.339145	val-mlogloss:0.528971
[856]	train-mlogloss:0.338951	val-mlogloss:0.528997
[857]	train-mlogloss:0.338813	val-mlogloss:0.529011
[858]	train-mlogloss:0.338664	val-mlogloss:0.529022
[859]	train-mlogloss:0.338537	val-mlogloss:0.529038
[860]	train-mlogloss:0.338379	val-mlogloss:0.529039
[861]	train-mlogloss:0.338255	val-mlogloss:0.52904
[862]	train-mlogloss:0.338115	val-mlogloss:0.529058
Stopping. Best iteration:
[812]	train-mlogloss:0.345931	val-mlogloss:0.528806

[0]	train-mlogloss:1.078	val-mlogloss:1.07854
Multiple eval metrics have been passed: 'val-mlogloss' will be used for early stopping.

Will train until val-mlogloss hasn't improved in 50 rounds.
[1]	train-mlogloss:1.05838	val-mlogloss:1.05926
[2]	train-mlogloss:1.0395	val-mlogloss:1.04091
[3]	train-mlogloss:1.02156	val-mlogloss:1.02338
[4]	train-mlogloss:1.00447	val-mlogloss:1.00668
[5]	train-mlogloss:0.988109	val-mlogloss:0.990719
[6]	train-mlogloss:0.97252	val-mlogloss:0.975535
[7]	train-mlogloss:0.957648	val-mlogloss:0.96101
[8]	train-mlogloss:0.943645	val-mlogloss:0.947351
[9]	train-mlogloss:0.929912	val-mlogloss:0.934029
[10]	train-mlogloss:0.916797	val-mlogloss:0.921278
[11]	train-mlogloss:0.904248	val-mlogloss:0.908961
[12]	train-mlogloss:0.892116	val-mlogloss:0.897169
[13]	train-mlogloss:0.880533	val-mlogloss:0.885966
[14]	train-mlogloss:0.869777	val-mlogloss:0.875586
[15]	train-mlogloss:0.859157	val-mlogloss:0.865385
[16]	train-mlogloss:0.848955	val-mlogloss:0.85548
[17]	train-mlogloss:0.839074	val-mlogloss:0.845915
[18]	train-mlogloss:0.829461	val-mlogloss:0.836576
[19]	train-mlogloss:0.820252	val-mlogloss:0.827593
[20]	train-mlogloss:0.811411	val-mlogloss:0.819085
[21]	train-mlogloss:0.802868	val-mlogloss:0.810883
[22]	train-mlogloss:0.79472	val-mlogloss:0.802979
[23]	train-mlogloss:0.78682	val-mlogloss:0.795381
[24]	train-mlogloss:0.779531	val-mlogloss:0.788368
[25]	train-mlogloss:0.772252	val-mlogloss:0.781388
[26]	train-mlogloss:0.765164	val-mlogloss:0.774643
[27]	train-mlogloss:0.758381	val-mlogloss:0.768154
[28]	train-mlogloss:0.751713	val-mlogloss:0.761825
[29]	train-mlogloss:0.745232	val-mlogloss:0.755654
[30]	train-mlogloss:0.739061	val-mlogloss:0.749747
[31]	train-mlogloss:0.733079	val-mlogloss:0.744019
[32]	train-mlogloss:0.727369	val-mlogloss:0.738503
[33]	train-mlogloss:0.721756	val-mlogloss:0.733211
[34]	train-mlogloss:0.716399	val-mlogloss:0.72808
[35]	train-mlogloss:0.711077	val-mlogloss:0.72303
[36]	train-mlogloss:0.706048	val-mlogloss:0.7182
[37]	train-mlogloss:0.701221	val-mlogloss:0.71359
[38]	train-mlogloss:0.696473	val-mlogloss:0.709147
[39]	train-mlogloss:0.691877	val-mlogloss:0.704882
[40]	train-mlogloss:0.687404	val-mlogloss:0.700675
[41]	train-mlogloss:0.683091	val-mlogloss:0.696693
[42]	train-mlogloss:0.678879	val-mlogloss:0.692759
[43]	train-mlogloss:0.67483	val-mlogloss:0.68896
[44]	train-mlogloss:0.670928	val-mlogloss:0.685356
[45]	train-mlogloss:0.667148	val-mlogloss:0.68181
[46]	train-mlogloss:0.663428	val-mlogloss:0.678469
[47]	train-mlogloss:0.659945	val-mlogloss:0.675224
[48]	train-mlogloss:0.656485	val-mlogloss:0.672077
[49]	train-mlogloss:0.653107	val-mlogloss:0.66905
[50]	train-mlogloss:0.649844	val-mlogloss:0.666073
[51]	train-mlogloss:0.646588	val-mlogloss:0.66319
[52]	train-mlogloss:0.643418	val-mlogloss:0.660272
[53]	train-mlogloss:0.64037	val-mlogloss:0.657494
[54]	train-mlogloss:0.637434	val-mlogloss:0.654836
[55]	train-mlogloss:0.634658	val-mlogloss:0.652281
[56]	train-mlogloss:0.631957	val-mlogloss:0.649871
[57]	train-mlogloss:0.629209	val-mlogloss:0.647372
[58]	train-mlogloss:0.626469	val-mlogloss:0.644922
[59]	train-mlogloss:0.62394	val-mlogloss:0.642679
[60]	train-mlogloss:0.621431	val-mlogloss:0.640419
[61]	train-mlogloss:0.618958	val-mlogloss:0.638179
[62]	train-mlogloss:0.616554	val-mlogloss:0.636021
[63]	train-mlogloss:0.614231	val-mlogloss:0.633987
[64]	train-mlogloss:0.611928	val-mlogloss:0.631921
[65]	train-mlogloss:0.609687	val-mlogloss:0.629971
[66]	train-mlogloss:0.607554	val-mlogloss:0.628088
[67]	train-mlogloss:0.605461	val-mlogloss:0.626329
[68]	train-mlogloss:0.603374	val-mlogloss:0.624502
[69]	train-mlogloss:0.601335	val-mlogloss:0.622744
[70]	train-mlogloss:0.599369	val-mlogloss:0.621052
[71]	train-mlogloss:0.597452	val-mlogloss:0.619411
[72]	train-mlogloss:0.595599	val-mlogloss:0.617778
[73]	train-mlogloss:0.593666	val-mlogloss:0.61616
[74]	train-mlogloss:0.591857	val-mlogloss:0.614607
[75]	train-mlogloss:0.590084	val-mlogloss:0.613155
[76]	train-mlogloss:0.588395	val-mlogloss:0.611659
[77]	train-mlogloss:0.586673	val-mlogloss:0.610093
[78]	train-mlogloss:0.585048	val-mlogloss:0.608773
[79]	train-mlogloss:0.583448	val-mlogloss:0.607423
[80]	train-mlogloss:0.581938	val-mlogloss:0.606183
[81]	train-mlogloss:0.580435	val-mlogloss:0.604947
[82]	train-mlogloss:0.579007	val-mlogloss:0.603798
[83]	train-mlogloss:0.577557	val-mlogloss:0.602594
[84]	train-mlogloss:0.576182	val-mlogloss:0.601433
[85]	train-mlogloss:0.574801	val-mlogloss:0.600222
[86]	train-mlogloss:0.573377	val-mlogloss:0.599003
[87]	train-mlogloss:0.572076	val-mlogloss:0.597922
[88]	train-mlogloss:0.57074	val-mlogloss:0.596781
[89]	train-mlogloss:0.569409	val-mlogloss:0.595688
[90]	train-mlogloss:0.568155	val-mlogloss:0.594672
[91]	train-mlogloss:0.566838	val-mlogloss:0.593646
[92]	train-mlogloss:0.565568	val-mlogloss:0.592586
[93]	train-mlogloss:0.564356	val-mlogloss:0.591632
[94]	train-mlogloss:0.563111	val-mlogloss:0.590669
[95]	train-mlogloss:0.562065	val-mlogloss:0.589811
[96]	train-mlogloss:0.560951	val-mlogloss:0.588941
[97]	train-mlogloss:0.559821	val-mlogloss:0.58811
[98]	train-mlogloss:0.558781	val-mlogloss:0.587279
[99]	train-mlogloss:0.557637	val-mlogloss:0.586385
[100]	train-mlogloss:0.556571	val-mlogloss:0.585549
[101]	train-mlogloss:0.555507	val-mlogloss:0.584762
[102]	train-mlogloss:0.554522	val-mlogloss:0.583991
[103]	train-mlogloss:0.553528	val-mlogloss:0.583171
[104]	train-mlogloss:0.552509	val-mlogloss:0.582413
[105]	train-mlogloss:0.551488	val-mlogloss:0.581624
[106]	train-mlogloss:0.550477	val-mlogloss:0.580861
[107]	train-mlogloss:0.549536	val-mlogloss:0.580146
[108]	train-mlogloss:0.548559	val-mlogloss:0.579415
[109]	train-mlogloss:0.547608	val-mlogloss:0.578645
[110]	train-mlogloss:0.546813	val-mlogloss:0.578095
[111]	train-mlogloss:0.545947	val-mlogloss:0.577443
[112]	train-mlogloss:0.545066	val-mlogloss:0.576827
[113]	train-mlogloss:0.544068	val-mlogloss:0.576131
[114]	train-mlogloss:0.543099	val-mlogloss:0.575467
[115]	train-mlogloss:0.542191	val-mlogloss:0.574828
[116]	train-mlogloss:0.541443	val-mlogloss:0.574251
[117]	train-mlogloss:0.540685	val-mlogloss:0.573709
[118]	train-mlogloss:0.53988	val-mlogloss:0.5731
[119]	train-mlogloss:0.539055	val-mlogloss:0.572553
[120]	train-mlogloss:0.538308	val-mlogloss:0.572008
[121]	train-mlogloss:0.537532	val-mlogloss:0.5715
[122]	train-mlogloss:0.536817	val-mlogloss:0.571029
[123]	train-mlogloss:0.5361	val-mlogloss:0.570529
[124]	train-mlogloss:0.535387	val-mlogloss:0.570097
[125]	train-mlogloss:0.534624	val-mlogloss:0.569509
[126]	train-mlogloss:0.533941	val-mlogloss:0.569051
[127]	train-mlogloss:0.533261	val-mlogloss:0.568553
[128]	train-mlogloss:0.532662	val-mlogloss:0.568142
[129]	train-mlogloss:0.531976	val-mlogloss:0.567702
[130]	train-mlogloss:0.531263	val-mlogloss:0.56726
[131]	train-mlogloss:0.530579	val-mlogloss:0.566804
[132]	train-mlogloss:0.529914	val-mlogloss:0.566355
[133]	train-mlogloss:0.529146	val-mlogloss:0.565838
[134]	train-mlogloss:0.528372	val-mlogloss:0.565325
[135]	train-mlogloss:0.527586	val-mlogloss:0.56482
[136]	train-mlogloss:0.526946	val-mlogloss:0.5644
[137]	train-mlogloss:0.526318	val-mlogloss:0.563997
[138]	train-mlogloss:0.525646	val-mlogloss:0.56357
[139]	train-mlogloss:0.525087	val-mlogloss:0.563192
[140]	train-mlogloss:0.524516	val-mlogloss:0.562833
[141]	train-mlogloss:0.523932	val-mlogloss:0.562502
[142]	train-mlogloss:0.52337	val-mlogloss:0.562144
[143]	train-mlogloss:0.522797	val-mlogloss:0.56179
[144]	train-mlogloss:0.522291	val-mlogloss:0.561436
[145]	train-mlogloss:0.52165	val-mlogloss:0.561031
[146]	train-mlogloss:0.520978	val-mlogloss:0.560648
[147]	train-mlogloss:0.520288	val-mlogloss:0.560212
[148]	train-mlogloss:0.519684	val-mlogloss:0.55979
[149]	train-mlogloss:0.518985	val-mlogloss:0.559403
[150]	train-mlogloss:0.518446	val-mlogloss:0.559064
[151]	train-mlogloss:0.517833	val-mlogloss:0.558647
[152]	train-mlogloss:0.517251	val-mlogloss:0.558316
[153]	train-mlogloss:0.516719	val-mlogloss:0.558012
[154]	train-mlogloss:0.516263	val-mlogloss:0.557748
[155]	train-mlogloss:0.515715	val-mlogloss:0.557373
[156]	train-mlogloss:0.515111	val-mlogloss:0.556965
[157]	train-mlogloss:0.514464	val-mlogloss:0.556587
[158]	train-mlogloss:0.513961	val-mlogloss:0.55637
[159]	train-mlogloss:0.513409	val-mlogloss:0.555999
[160]	train-mlogloss:0.512925	val-mlogloss:0.555658
[161]	train-mlogloss:0.512395	val-mlogloss:0.555377
[162]	train-mlogloss:0.511972	val-mlogloss:0.555174
[163]	train-mlogloss:0.511404	val-mlogloss:0.554854
[164]	train-mlogloss:0.510855	val-mlogloss:0.554543
[165]	train-mlogloss:0.510246	val-mlogloss:0.554223
[166]	train-mlogloss:0.509603	val-mlogloss:0.553921
[167]	train-mlogloss:0.509022	val-mlogloss:0.553626
[168]	train-mlogloss:0.508429	val-mlogloss:0.553329
[169]	train-mlogloss:0.507996	val-mlogloss:0.553115
[170]	train-mlogloss:0.507547	val-mlogloss:0.55287
[171]	train-mlogloss:0.507051	val-mlogloss:0.552572
[172]	train-mlogloss:0.506624	val-mlogloss:0.552307
[173]	train-mlogloss:0.506127	val-mlogloss:0.552045
[174]	train-mlogloss:0.505663	val-mlogloss:0.551771
[175]	train-mlogloss:0.505127	val-mlogloss:0.551501
[176]	train-mlogloss:0.504714	val-mlogloss:0.551294
[177]	train-mlogloss:0.504072	val-mlogloss:0.550971
[178]	train-mlogloss:0.503553	val-mlogloss:0.550729
[179]	train-mlogloss:0.503046	val-mlogloss:0.550457
[180]	train-mlogloss:0.502547	val-mlogloss:0.550219
[181]	train-mlogloss:0.501997	val-mlogloss:0.549913
[182]	train-mlogloss:0.501533	val-mlogloss:0.54967
[183]	train-mlogloss:0.501068	val-mlogloss:0.549488
[184]	train-mlogloss:0.500482	val-mlogloss:0.549217
[185]	train-mlogloss:0.500044	val-mlogloss:0.54897
[186]	train-mlogloss:0.499613	val-mlogloss:0.548765
[187]	train-mlogloss:0.499127	val-mlogloss:0.548537
[188]	train-mlogloss:0.498686	val-mlogloss:0.548272
[189]	train-mlogloss:0.498142	val-mlogloss:0.547992
[190]	train-mlogloss:0.497801	val-mlogloss:0.547782
[191]	train-mlogloss:0.497219	val-mlogloss:0.547497
[192]	train-mlogloss:0.49669	val-mlogloss:0.547308
[193]	train-mlogloss:0.496191	val-mlogloss:0.54703
[194]	train-mlogloss:0.495725	val-mlogloss:0.546839
[195]	train-mlogloss:0.495359	val-mlogloss:0.546669
[196]	train-mlogloss:0.49494	val-mlogloss:0.54651
[197]	train-mlogloss:0.494472	val-mlogloss:0.546267
[198]	train-mlogloss:0.494085	val-mlogloss:0.546121
[199]	train-mlogloss:0.493582	val-mlogloss:0.545925
[200]	train-mlogloss:0.493174	val-mlogloss:0.54576
[201]	train-mlogloss:0.492775	val-mlogloss:0.545578
[202]	train-mlogloss:0.492451	val-mlogloss:0.545403
[203]	train-mlogloss:0.492091	val-mlogloss:0.545262
[204]	train-mlogloss:0.491646	val-mlogloss:0.545066
[205]	train-mlogloss:0.491296	val-mlogloss:0.544885
[206]	train-mlogloss:0.490905	val-mlogloss:0.544703
[207]	train-mlogloss:0.490515	val-mlogloss:0.544512
[208]	train-mlogloss:0.490084	val-mlogloss:0.544313
[209]	train-mlogloss:0.489776	val-mlogloss:0.544121
[210]	train-mlogloss:0.489361	val-mlogloss:0.54389
[211]	train-mlogloss:0.488899	val-mlogloss:0.543696
[212]	train-mlogloss:0.488439	val-mlogloss:0.543534
[213]	train-mlogloss:0.487968	val-mlogloss:0.543335
[214]	train-mlogloss:0.487517	val-mlogloss:0.543197
[215]	train-mlogloss:0.487138	val-mlogloss:0.543061
[216]	train-mlogloss:0.486747	val-mlogloss:0.542873
[217]	train-mlogloss:0.486331	val-mlogloss:0.542708
[218]	train-mlogloss:0.485958	val-mlogloss:0.542498
[219]	train-mlogloss:0.485549	val-mlogloss:0.54242
[220]	train-mlogloss:0.485127	val-mlogloss:0.54226
[221]	train-mlogloss:0.484838	val-mlogloss:0.542113
[222]	train-mlogloss:0.484514	val-mlogloss:0.541951
[223]	train-mlogloss:0.484086	val-mlogloss:0.541822
[224]	train-mlogloss:0.483654	val-mlogloss:0.541698
[225]	train-mlogloss:0.483205	val-mlogloss:0.541554
[226]	train-mlogloss:0.482871	val-mlogloss:0.541421
[227]	train-mlogloss:0.482407	val-mlogloss:0.541173
[228]	train-mlogloss:0.481985	val-mlogloss:0.54095
[229]	train-mlogloss:0.481638	val-mlogloss:0.540842
[230]	train-mlogloss:0.481312	val-mlogloss:0.540718
[231]	train-mlogloss:0.48088	val-mlogloss:0.540563
[232]	train-mlogloss:0.48057	val-mlogloss:0.540435
[233]	train-mlogloss:0.480313	val-mlogloss:0.540336
[234]	train-mlogloss:0.479865	val-mlogloss:0.540166
[235]	train-mlogloss:0.47938	val-mlogloss:0.539981
[236]	train-mlogloss:0.478965	val-mlogloss:0.539845
[237]	train-mlogloss:0.478708	val-mlogloss:0.539706
[238]	train-mlogloss:0.478378	val-mlogloss:0.539599
[239]	train-mlogloss:0.478048	val-mlogloss:0.539468
[240]	train-mlogloss:0.477626	val-mlogloss:0.539287
[241]	train-mlogloss:0.477329	val-mlogloss:0.539173
[242]	train-mlogloss:0.477034	val-mlogloss:0.53907
[243]	train-mlogloss:0.4767	val-mlogloss:0.538949
[244]	train-mlogloss:0.47633	val-mlogloss:0.538832
[245]	train-mlogloss:0.475924	val-mlogloss:0.538685
[246]	train-mlogloss:0.475476	val-mlogloss:0.538537
[247]	train-mlogloss:0.475135	val-mlogloss:0.5384
[248]	train-mlogloss:0.474746	val-mlogloss:0.538285
[249]	train-mlogloss:0.4743	val-mlogloss:0.538137
[250]	train-mlogloss:0.473915	val-mlogloss:0.538076
[251]	train-mlogloss:0.473628	val-mlogloss:0.538012
[252]	train-mlogloss:0.473262	val-mlogloss:0.537888
[253]	train-mlogloss:0.472957	val-mlogloss:0.537748
[254]	train-mlogloss:0.472629	val-mlogloss:0.537644
[255]	train-mlogloss:0.472147	val-mlogloss:0.537508
[256]	train-mlogloss:0.471879	val-mlogloss:0.537434
[257]	train-mlogloss:0.471513	val-mlogloss:0.537332
[258]	train-mlogloss:0.471159	val-mlogloss:0.537182
[259]	train-mlogloss:0.470827	val-mlogloss:0.537081
[260]	train-mlogloss:0.47036	val-mlogloss:0.536875
[261]	train-mlogloss:0.470005	val-mlogloss:0.53677
[262]	train-mlogloss:0.469763	val-mlogloss:0.536685
[263]	train-mlogloss:0.469381	val-mlogloss:0.536551
[264]	train-mlogloss:0.469128	val-mlogloss:0.536436
[265]	train-mlogloss:0.468906	val-mlogloss:0.536342
[266]	train-mlogloss:0.468611	val-mlogloss:0.536205
[267]	train-mlogloss:0.468315	val-mlogloss:0.536078
[268]	train-mlogloss:0.467987	val-mlogloss:0.535962
[269]	train-mlogloss:0.467701	val-mlogloss:0.535843
[270]	train-mlogloss:0.467391	val-mlogloss:0.535747
[271]	train-mlogloss:0.467069	val-mlogloss:0.535663
[272]	train-mlogloss:0.466763	val-mlogloss:0.535582
[273]	train-mlogloss:0.466438	val-mlogloss:0.535469
[274]	train-mlogloss:0.466165	val-mlogloss:0.535356
[275]	train-mlogloss:0.465826	val-mlogloss:0.535297
[276]	train-mlogloss:0.46545	val-mlogloss:0.535195
[277]	train-mlogloss:0.46522	val-mlogloss:0.535098
[278]	train-mlogloss:0.464907	val-mlogloss:0.534966
[279]	train-mlogloss:0.46458	val-mlogloss:0.534871
[280]	train-mlogloss:0.464355	val-mlogloss:0.534766
[281]	train-mlogloss:0.464047	val-mlogloss:0.534714
[282]	train-mlogloss:0.463633	val-mlogloss:0.534616
[283]	train-mlogloss:0.463285	val-mlogloss:0.534495
[284]	train-mlogloss:0.462992	val-mlogloss:0.534423
[285]	train-mlogloss:0.4627	val-mlogloss:0.534307
[286]	train-mlogloss:0.462363	val-mlogloss:0.534171
[287]	train-mlogloss:0.462075	val-mlogloss:0.534064
[288]	train-mlogloss:0.461732	val-mlogloss:0.533916
[289]	train-mlogloss:0.461451	val-mlogloss:0.533849
[290]	train-mlogloss:0.461108	val-mlogloss:0.533709
[291]	train-mlogloss:0.460676	val-mlogloss:0.533598
[292]	train-mlogloss:0.460348	val-mlogloss:0.533506
[293]	train-mlogloss:0.459903	val-mlogloss:0.533359
[294]	train-mlogloss:0.459632	val-mlogloss:0.533322
[295]	train-mlogloss:0.459362	val-mlogloss:0.533223
[296]	train-mlogloss:0.459052	val-mlogloss:0.53315
[297]	train-mlogloss:0.458764	val-mlogloss:0.533036
[298]	train-mlogloss:0.458432	val-mlogloss:0.532888
[299]	train-mlogloss:0.458125	val-mlogloss:0.532727
[300]	train-mlogloss:0.457807	val-mlogloss:0.532638
[301]	train-mlogloss:0.457456	val-mlogloss:0.532553
[302]	train-mlogloss:0.457271	val-mlogloss:0.532453
[303]	train-mlogloss:0.457007	val-mlogloss:0.532347
[304]	train-mlogloss:0.456692	val-mlogloss:0.532249
[305]	train-mlogloss:0.456407	val-mlogloss:0.532122
[306]	train-mlogloss:0.456079	val-mlogloss:0.532021
[307]	train-mlogloss:0.455707	val-mlogloss:0.53187
[308]	train-mlogloss:0.455383	val-mlogloss:0.531769
[309]	train-mlogloss:0.455077	val-mlogloss:0.531661
[310]	train-mlogloss:0.454732	val-mlogloss:0.531543
[311]	train-mlogloss:0.454411	val-mlogloss:0.531433
[312]	train-mlogloss:0.454102	val-mlogloss:0.531369
[313]	train-mlogloss:0.45377	val-mlogloss:0.531265
[314]	train-mlogloss:0.453362	val-mlogloss:0.531118
[315]	train-mlogloss:0.453119	val-mlogloss:0.531053
[316]	train-mlogloss:0.452836	val-mlogloss:0.530966
[317]	train-mlogloss:0.452603	val-mlogloss:0.530894
[318]	train-mlogloss:0.452305	val-mlogloss:0.530829
[319]	train-mlogloss:0.452017	val-mlogloss:0.530762
[320]	train-mlogloss:0.451757	val-mlogloss:0.530687
[321]	train-mlogloss:0.451468	val-mlogloss:0.530648
[322]	train-mlogloss:0.451282	val-mlogloss:0.530634
[323]	train-mlogloss:0.451053	val-mlogloss:0.53056
[324]	train-mlogloss:0.450684	val-mlogloss:0.530549
[325]	train-mlogloss:0.450338	val-mlogloss:0.530519
[326]	train-mlogloss:0.450024	val-mlogloss:0.530484
[327]	train-mlogloss:0.449804	val-mlogloss:0.530447
[328]	train-mlogloss:0.449524	val-mlogloss:0.530349
[329]	train-mlogloss:0.449252	val-mlogloss:0.530292
[330]	train-mlogloss:0.448969	val-mlogloss:0.530226
[331]	train-mlogloss:0.448641	val-mlogloss:0.530126
[332]	train-mlogloss:0.448271	val-mlogloss:0.530016
[333]	train-mlogloss:0.447975	val-mlogloss:0.529954
[334]	train-mlogloss:0.447653	val-mlogloss:0.529848
[335]	train-mlogloss:0.447314	val-mlogloss:0.529723
[336]	train-mlogloss:0.447119	val-mlogloss:0.529688
[337]	train-mlogloss:0.446868	val-mlogloss:0.529596
[338]	train-mlogloss:0.446694	val-mlogloss:0.529564
[339]	train-mlogloss:0.446355	val-mlogloss:0.529481
[340]	train-mlogloss:0.446209	val-mlogloss:0.529429
[341]	train-mlogloss:0.445896	val-mlogloss:0.529304
[342]	train-mlogloss:0.445586	val-mlogloss:0.529207
[343]	train-mlogloss:0.445386	val-mlogloss:0.529149
[344]	train-mlogloss:0.445056	val-mlogloss:0.529074
[345]	train-mlogloss:0.444781	val-mlogloss:0.529008
[346]	train-mlogloss:0.444521	val-mlogloss:0.52896
[347]	train-mlogloss:0.444127	val-mlogloss:0.528839
[348]	train-mlogloss:0.443855	val-mlogloss:0.528796
[349]	train-mlogloss:0.443658	val-mlogloss:0.528777
[350]	train-mlogloss:0.443406	val-mlogloss:0.528697
[351]	train-mlogloss:0.443179	val-mlogloss:0.528662
[352]	train-mlogloss:0.442927	val-mlogloss:0.528598
[353]	train-mlogloss:0.442679	val-mlogloss:0.528513
[354]	train-mlogloss:0.442484	val-mlogloss:0.528502
[355]	train-mlogloss:0.442301	val-mlogloss:0.528424
[356]	train-mlogloss:0.442093	val-mlogloss:0.52836
[357]	train-mlogloss:0.441789	val-mlogloss:0.528297
[358]	train-mlogloss:0.441415	val-mlogloss:0.528278
[359]	train-mlogloss:0.441197	val-mlogloss:0.528241
[360]	train-mlogloss:0.440888	val-mlogloss:0.528236
[361]	train-mlogloss:0.440627	val-mlogloss:0.528151
[362]	train-mlogloss:0.440421	val-mlogloss:0.528077
[363]	train-mlogloss:0.440124	val-mlogloss:0.528014
[364]	train-mlogloss:0.439805	val-mlogloss:0.527932
[365]	train-mlogloss:0.439513	val-mlogloss:0.527801
[366]	train-mlogloss:0.439196	val-mlogloss:0.52769
[367]	train-mlogloss:0.438907	val-mlogloss:0.527669
[368]	train-mlogloss:0.438627	val-mlogloss:0.52758
[369]	train-mlogloss:0.438366	val-mlogloss:0.527564
[370]	train-mlogloss:0.438162	val-mlogloss:0.527532
[371]	train-mlogloss:0.437888	val-mlogloss:0.527449
[372]	train-mlogloss:0.437631	val-mlogloss:0.527371
[373]	train-mlogloss:0.437315	val-mlogloss:0.52728
[374]	train-mlogloss:0.437101	val-mlogloss:0.527211
[375]	train-mlogloss:0.436825	val-mlogloss:0.527167
[376]	train-mlogloss:0.436582	val-mlogloss:0.527117
[377]	train-mlogloss:0.43637	val-mlogloss:0.527047
[378]	train-mlogloss:0.436175	val-mlogloss:0.527013
[379]	train-mlogloss:0.435917	val-mlogloss:0.526948
[380]	train-mlogloss:0.435739	val-mlogloss:0.526926
[381]	train-mlogloss:0.435526	val-mlogloss:0.526868
[382]	train-mlogloss:0.435245	val-mlogloss:0.526843
[383]	train-mlogloss:0.434955	val-mlogloss:0.526786
[384]	train-mlogloss:0.434638	val-mlogloss:0.526715
[385]	train-mlogloss:0.434446	val-mlogloss:0.526662
[386]	train-mlogloss:0.434248	val-mlogloss:0.526598
[387]	train-mlogloss:0.433923	val-mlogloss:0.52652
[388]	train-mlogloss:0.433658	val-mlogloss:0.526465
[389]	train-mlogloss:0.433451	val-mlogloss:0.526401
[390]	train-mlogloss:0.433194	val-mlogloss:0.526359
[391]	train-mlogloss:0.433064	val-mlogloss:0.526312
[392]	train-mlogloss:0.432692	val-mlogloss:0.526284
[393]	train-mlogloss:0.432391	val-mlogloss:0.526258
[394]	train-mlogloss:0.432128	val-mlogloss:0.526192
[395]	train-mlogloss:0.431955	val-mlogloss:0.526137
[396]	train-mlogloss:0.431621	val-mlogloss:0.526058
[397]	train-mlogloss:0.431309	val-mlogloss:0.525995
[398]	train-mlogloss:0.431049	val-mlogloss:0.525943
[399]	train-mlogloss:0.430825	val-mlogloss:0.525903
[400]	train-mlogloss:0.430637	val-mlogloss:0.525838
[401]	train-mlogloss:0.43037	val-mlogloss:0.525777
[402]	train-mlogloss:0.430114	val-mlogloss:0.525731
[403]	train-mlogloss:0.429875	val-mlogloss:0.52568
[404]	train-mlogloss:0.429697	val-mlogloss:0.525669
[405]	train-mlogloss:0.429358	val-mlogloss:0.525633
[406]	train-mlogloss:0.429149	val-mlogloss:0.525597
[407]	train-mlogloss:0.42892	val-mlogloss:0.525564
[408]	train-mlogloss:0.42871	val-mlogloss:0.525499
[409]	train-mlogloss:0.428345	val-mlogloss:0.525404
[410]	train-mlogloss:0.428042	val-mlogloss:0.52538
[411]	train-mlogloss:0.427747	val-mlogloss:0.525338
[412]	train-mlogloss:0.427522	val-mlogloss:0.525286
[413]	train-mlogloss:0.427232	val-mlogloss:0.525256
[414]	train-mlogloss:0.426947	val-mlogloss:0.525182
[415]	train-mlogloss:0.426664	val-mlogloss:0.525129
[416]	train-mlogloss:0.426398	val-mlogloss:0.525065
[417]	train-mlogloss:0.426222	val-mlogloss:0.525005
[418]	train-mlogloss:0.425978	val-mlogloss:0.524957
[419]	train-mlogloss:0.425699	val-mlogloss:0.524904
[420]	train-mlogloss:0.425431	val-mlogloss:0.524847
[421]	train-mlogloss:0.425124	val-mlogloss:0.524797
[422]	train-mlogloss:0.424942	val-mlogloss:0.524781
[423]	train-mlogloss:0.424736	val-mlogloss:0.524761
[424]	train-mlogloss:0.424393	val-mlogloss:0.524732
[425]	train-mlogloss:0.424121	val-mlogloss:0.524707
[426]	train-mlogloss:0.423893	val-mlogloss:0.524673
[427]	train-mlogloss:0.423576	val-mlogloss:0.524591
[428]	train-mlogloss:0.423339	val-mlogloss:0.524588
[429]	train-mlogloss:0.423094	val-mlogloss:0.524538
[430]	train-mlogloss:0.422933	val-mlogloss:0.524504
[431]	train-mlogloss:0.422607	val-mlogloss:0.524405
[432]	train-mlogloss:0.422365	val-mlogloss:0.524358
[433]	train-mlogloss:0.422083	val-mlogloss:0.524274
[434]	train-mlogloss:0.421823	val-mlogloss:0.524239
[435]	train-mlogloss:0.421537	val-mlogloss:0.524166
[436]	train-mlogloss:0.421272	val-mlogloss:0.524151
[437]	train-mlogloss:0.421057	val-mlogloss:0.524088
[438]	train-mlogloss:0.420857	val-mlogloss:0.524081
[439]	train-mlogloss:0.420657	val-mlogloss:0.524059
[440]	train-mlogloss:0.420451	val-mlogloss:0.524078
[441]	train-mlogloss:0.420215	val-mlogloss:0.52403
[442]	train-mlogloss:0.419973	val-mlogloss:0.524018
[443]	train-mlogloss:0.419728	val-mlogloss:0.523946
[444]	train-mlogloss:0.419477	val-mlogloss:0.523866
[445]	train-mlogloss:0.419194	val-mlogloss:0.523818
[446]	train-mlogloss:0.419	val-mlogloss:0.523734
[447]	train-mlogloss:0.418725	val-mlogloss:0.523707
[448]	train-mlogloss:0.41852	val-mlogloss:0.523682
[449]	train-mlogloss:0.418249	val-mlogloss:0.523641
[450]	train-mlogloss:0.41801	val-mlogloss:0.523607
[451]	train-mlogloss:0.417838	val-mlogloss:0.523593
[452]	train-mlogloss:0.417635	val-mlogloss:0.52354
[453]	train-mlogloss:0.41743	val-mlogloss:0.523465
[454]	train-mlogloss:0.417217	val-mlogloss:0.523417
[455]	train-mlogloss:0.416962	val-mlogloss:0.523386
[456]	train-mlogloss:0.4167	val-mlogloss:0.523322
[457]	train-mlogloss:0.41646	val-mlogloss:0.523294
[458]	train-mlogloss:0.416294	val-mlogloss:0.523228
[459]	train-mlogloss:0.416081	val-mlogloss:0.523186
[460]	train-mlogloss:0.415866	val-mlogloss:0.523181
[461]	train-mlogloss:0.415651	val-mlogloss:0.523143
[462]	train-mlogloss:0.415375	val-mlogloss:0.523109
[463]	train-mlogloss:0.415198	val-mlogloss:0.523087
[464]	train-mlogloss:0.414903	val-mlogloss:0.52303
[465]	train-mlogloss:0.414678	val-mlogloss:0.523002
[466]	train-mlogloss:0.41454	val-mlogloss:0.522969
[467]	train-mlogloss:0.414415	val-mlogloss:0.52293
[468]	train-mlogloss:0.414201	val-mlogloss:0.522877
[469]	train-mlogloss:0.413978	val-mlogloss:0.522819
[470]	train-mlogloss:0.413753	val-mlogloss:0.522734
[471]	train-mlogloss:0.413539	val-mlogloss:0.522755
[472]	train-mlogloss:0.4133	val-mlogloss:0.522725
[473]	train-mlogloss:0.41316	val-mlogloss:0.522744
[474]	train-mlogloss:0.413008	val-mlogloss:0.522706
[475]	train-mlogloss:0.412824	val-mlogloss:0.522699
[476]	train-mlogloss:0.412643	val-mlogloss:0.522654
[477]	train-mlogloss:0.412423	val-mlogloss:0.522616
[478]	train-mlogloss:0.412194	val-mlogloss:0.522575
[479]	train-mlogloss:0.411964	val-mlogloss:0.522502
[480]	train-mlogloss:0.411694	val-mlogloss:0.522452
[481]	train-mlogloss:0.41142	val-mlogloss:0.522394
[482]	train-mlogloss:0.411237	val-mlogloss:0.522391
[483]	train-mlogloss:0.411017	val-mlogloss:0.522425
[484]	train-mlogloss:0.410702	val-mlogloss:0.522325
[485]	train-mlogloss:0.410473	val-mlogloss:0.522301
[486]	train-mlogloss:0.410211	val-mlogloss:0.522272
[487]	train-mlogloss:0.409916	val-mlogloss:0.522242
[488]	train-mlogloss:0.409665	val-mlogloss:0.52228
[489]	train-mlogloss:0.409448	val-mlogloss:0.522248
[490]	train-mlogloss:0.409222	val-mlogloss:0.522235
[491]	train-mlogloss:0.409006	val-mlogloss:0.522235
[492]	train-mlogloss:0.408714	val-mlogloss:0.522222
[493]	train-mlogloss:0.40853	val-mlogloss:0.522156
[494]	train-mlogloss:0.408348	val-mlogloss:0.522145
[495]	train-mlogloss:0.408138	val-mlogloss:0.522067
[496]	train-mlogloss:0.407875	val-mlogloss:0.521992
[497]	train-mlogloss:0.407667	val-mlogloss:0.521956
[498]	train-mlogloss:0.407429	val-mlogloss:0.5219
[499]	train-mlogloss:0.407175	val-mlogloss:0.521866
[500]	train-mlogloss:0.406994	val-mlogloss:0.521874
[501]	train-mlogloss:0.40682	val-mlogloss:0.521871
[502]	train-mlogloss:0.406629	val-mlogloss:0.521883
[503]	train-mlogloss:0.406327	val-mlogloss:0.521843
[504]	train-mlogloss:0.406179	val-mlogloss:0.521813
[505]	train-mlogloss:0.405951	val-mlogloss:0.521706
[506]	train-mlogloss:0.405745	val-mlogloss:0.521649
[507]	train-mlogloss:0.405604	val-mlogloss:0.521655
[508]	train-mlogloss:0.405449	val-mlogloss:0.521624
[509]	train-mlogloss:0.405222	val-mlogloss:0.521625
[510]	train-mlogloss:0.405007	val-mlogloss:0.521611
[511]	train-mlogloss:0.404854	val-mlogloss:0.521562
[512]	train-mlogloss:0.404639	val-mlogloss:0.521545
[513]	train-mlogloss:0.404394	val-mlogloss:0.521514
[514]	train-mlogloss:0.404161	val-mlogloss:0.521504
[515]	train-mlogloss:0.403887	val-mlogloss:0.521443
[516]	train-mlogloss:0.403691	val-mlogloss:0.521428
[517]	train-mlogloss:0.403453	val-mlogloss:0.521436
[518]	train-mlogloss:0.403186	val-mlogloss:0.521355
[519]	train-mlogloss:0.403025	val-mlogloss:0.521351
[520]	train-mlogloss:0.402814	val-mlogloss:0.521329
[521]	train-mlogloss:0.402603	val-mlogloss:0.521318
[522]	train-mlogloss:0.402391	val-mlogloss:0.521316
[523]	train-mlogloss:0.402097	val-mlogloss:0.521264
[524]	train-mlogloss:0.401872	val-mlogloss:0.521217
[525]	train-mlogloss:0.401641	val-mlogloss:0.521174
[526]	train-mlogloss:0.401455	val-mlogloss:0.521134
[527]	train-mlogloss:0.401204	val-mlogloss:0.521116
[528]	train-mlogloss:0.400974	val-mlogloss:0.52106
[529]	train-mlogloss:0.400841	val-mlogloss:0.521076
[530]	train-mlogloss:0.400627	val-mlogloss:0.521028
[531]	train-mlogloss:0.40044	val-mlogloss:0.520992
[532]	train-mlogloss:0.400231	val-mlogloss:0.520976
[533]	train-mlogloss:0.400058	val-mlogloss:0.520972
[534]	train-mlogloss:0.399881	val-mlogloss:0.520919
[535]	train-mlogloss:0.399639	val-mlogloss:0.520901
[536]	train-mlogloss:0.399364	val-mlogloss:0.520883
[537]	train-mlogloss:0.399189	val-mlogloss:0.520825
[538]	train-mlogloss:0.3989	val-mlogloss:0.52081
[539]	train-mlogloss:0.398675	val-mlogloss:0.520736
[540]	train-mlogloss:0.398533	val-mlogloss:0.520724
[541]	train-mlogloss:0.3984	val-mlogloss:0.520743
[542]	train-mlogloss:0.398208	val-mlogloss:0.520661
[543]	train-mlogloss:0.397966	val-mlogloss:0.520597
[544]	train-mlogloss:0.397769	val-mlogloss:0.520611
[545]	train-mlogloss:0.397515	val-mlogloss:0.520587
[546]	train-mlogloss:0.397265	val-mlogloss:0.520556
[547]	train-mlogloss:0.397149	val-mlogloss:0.520545
[548]	train-mlogloss:0.396881	val-mlogloss:0.520539
[549]	train-mlogloss:0.396647	val-mlogloss:0.520505
[550]	train-mlogloss:0.396472	val-mlogloss:0.520491
[551]	train-mlogloss:0.39627	val-mlogloss:0.520487
[552]	train-mlogloss:0.396056	val-mlogloss:0.520466
[553]	train-mlogloss:0.395874	val-mlogloss:0.520428
[554]	train-mlogloss:0.395706	val-mlogloss:0.520423
[555]	train-mlogloss:0.395537	val-mlogloss:0.520402
[556]	train-mlogloss:0.39533	val-mlogloss:0.520415
[557]	train-mlogloss:0.395052	val-mlogloss:0.520391
[558]	train-mlogloss:0.39481	val-mlogloss:0.520395
[559]	train-mlogloss:0.39456	val-mlogloss:0.520358
[560]	train-mlogloss:0.394344	val-mlogloss:0.52036
[561]	train-mlogloss:0.394123	val-mlogloss:0.520335
[562]	train-mlogloss:0.393932	val-mlogloss:0.520345
[563]	train-mlogloss:0.393756	val-mlogloss:0.520332
[564]	train-mlogloss:0.393516	val-mlogloss:0.520301
[565]	train-mlogloss:0.393327	val-mlogloss:0.520272
[566]	train-mlogloss:0.393052	val-mlogloss:0.520233
[567]	train-mlogloss:0.392836	val-mlogloss:0.520226
[568]	train-mlogloss:0.392584	val-mlogloss:0.52021
[569]	train-mlogloss:0.392381	val-mlogloss:0.520178
[570]	train-mlogloss:0.392201	val-mlogloss:0.520153
[571]	train-mlogloss:0.39196	val-mlogloss:0.520123
[572]	train-mlogloss:0.391789	val-mlogloss:0.52009
[573]	train-mlogloss:0.391608	val-mlogloss:0.520033
[574]	train-mlogloss:0.391401	val-mlogloss:0.520018
[575]	train-mlogloss:0.39122	val-mlogloss:0.520021
[576]	train-mlogloss:0.390979	val-mlogloss:0.51998
[577]	train-mlogloss:0.390804	val-mlogloss:0.519992
[578]	train-mlogloss:0.39054	val-mlogloss:0.519944
[579]	train-mlogloss:0.39038	val-mlogloss:0.519937
[580]	train-mlogloss:0.390167	val-mlogloss:0.519942
[581]	train-mlogloss:0.389879	val-mlogloss:0.519977
[582]	train-mlogloss:0.389663	val-mlogloss:0.519929
[583]	train-mlogloss:0.389416	val-mlogloss:0.519904
[584]	train-mlogloss:0.389234	val-mlogloss:0.519903
[585]	train-mlogloss:0.389061	val-mlogloss:0.519881
[586]	train-mlogloss:0.388953	val-mlogloss:0.519869
[587]	train-mlogloss:0.388733	val-mlogloss:0.519842
[588]	train-mlogloss:0.388603	val-mlogloss:0.519851
[589]	train-mlogloss:0.388425	val-mlogloss:0.519771
[590]	train-mlogloss:0.388292	val-mlogloss:0.519773
[591]	train-mlogloss:0.388095	val-mlogloss:0.51976
[592]	train-mlogloss:0.387889	val-mlogloss:0.519753
[593]	train-mlogloss:0.387693	val-mlogloss:0.519759
[594]	train-mlogloss:0.387474	val-mlogloss:0.519751
[595]	train-mlogloss:0.387347	val-mlogloss:0.519733
[596]	train-mlogloss:0.387128	val-mlogloss:0.51972
[597]	train-mlogloss:0.386876	val-mlogloss:0.519706
[598]	train-mlogloss:0.386695	val-mlogloss:0.519686
[599]	train-mlogloss:0.386518	val-mlogloss:0.519684
[600]	train-mlogloss:0.386325	val-mlogloss:0.519665
[601]	train-mlogloss:0.386144	val-mlogloss:0.519626
[602]	train-mlogloss:0.385904	val-mlogloss:0.519617
[603]	train-mlogloss:0.385673	val-mlogloss:0.519608
[604]	train-mlogloss:0.385496	val-mlogloss:0.519624
[605]	train-mlogloss:0.385344	val-mlogloss:0.51963
[606]	train-mlogloss:0.3851	val-mlogloss:0.51963
[607]	train-mlogloss:0.384867	val-mlogloss:0.519623
[608]	train-mlogloss:0.384659	val-mlogloss:0.519614
[609]	train-mlogloss:0.384566	val-mlogloss:0.519606
[610]	train-mlogloss:0.384375	val-mlogloss:0.519545
[611]	train-mlogloss:0.384212	val-mlogloss:0.519547
[612]	train-mlogloss:0.384099	val-mlogloss:0.519514
[613]	train-mlogloss:0.383939	val-mlogloss:0.519487
[614]	train-mlogloss:0.383756	val-mlogloss:0.519472
[615]	train-mlogloss:0.383563	val-mlogloss:0.519454
[616]	train-mlogloss:0.383396	val-mlogloss:0.519436
[617]	train-mlogloss:0.383176	val-mlogloss:0.519383
[618]	train-mlogloss:0.382945	val-mlogloss:0.519331
[619]	train-mlogloss:0.38277	val-mlogloss:0.519296
[620]	train-mlogloss:0.382624	val-mlogloss:0.519276
[621]	train-mlogloss:0.382437	val-mlogloss:0.519248
[622]	train-mlogloss:0.382291	val-mlogloss:0.519198
[623]	train-mlogloss:0.382079	val-mlogloss:0.5192
[624]	train-mlogloss:0.381857	val-mlogloss:0.519143
[625]	train-mlogloss:0.381627	val-mlogloss:0.519109
[626]	train-mlogloss:0.381482	val-mlogloss:0.519071
[627]	train-mlogloss:0.3813	val-mlogloss:0.519093
[628]	train-mlogloss:0.381126	val-mlogloss:0.519098
[629]	train-mlogloss:0.380967	val-mlogloss:0.519048
[630]	train-mlogloss:0.380701	val-mlogloss:0.519017
[631]	train-mlogloss:0.380507	val-mlogloss:0.518993
[632]	train-mlogloss:0.380335	val-mlogloss:0.518972
[633]	train-mlogloss:0.380078	val-mlogloss:0.518975
[634]	train-mlogloss:0.379883	val-mlogloss:0.518936
[635]	train-mlogloss:0.379631	val-mlogloss:0.518899
[636]	train-mlogloss:0.379429	val-mlogloss:0.518912
[637]	train-mlogloss:0.379226	val-mlogloss:0.518894
[638]	train-mlogloss:0.379061	val-mlogloss:0.518862
[639]	train-mlogloss:0.378838	val-mlogloss:0.518882
[640]	train-mlogloss:0.378625	val-mlogloss:0.518849
[641]	train-mlogloss:0.378441	val-mlogloss:0.518802
[642]	train-mlogloss:0.378299	val-mlogloss:0.51878
[643]	train-mlogloss:0.378096	val-mlogloss:0.518753
[644]	train-mlogloss:0.377925	val-mlogloss:0.51877
[645]	train-mlogloss:0.377776	val-mlogloss:0.518762
[646]	train-mlogloss:0.377591	val-mlogloss:0.518719
[647]	train-mlogloss:0.377332	val-mlogloss:0.518674
[648]	train-mlogloss:0.37706	val-mlogloss:0.518656
[649]	train-mlogloss:0.376938	val-mlogloss:0.51865
[650]	train-mlogloss:0.37677	val-mlogloss:0.518609
[651]	train-mlogloss:0.376532	val-mlogloss:0.518606
[652]	train-mlogloss:0.376337	val-mlogloss:0.51859
[653]	train-mlogloss:0.376087	val-mlogloss:0.518608
[654]	train-mlogloss:0.375902	val-mlogloss:0.518593
[655]	train-mlogloss:0.37571	val-mlogloss:0.518572
[656]	train-mlogloss:0.375529	val-mlogloss:0.518578
[657]	train-mlogloss:0.375344	val-mlogloss:0.518534
[658]	train-mlogloss:0.375199	val-mlogloss:0.518492
[659]	train-mlogloss:0.375005	val-mlogloss:0.518484
[660]	train-mlogloss:0.374861	val-mlogloss:0.518476
[661]	train-mlogloss:0.374705	val-mlogloss:0.518437
[662]	train-mlogloss:0.37459	val-mlogloss:0.518436
[663]	train-mlogloss:0.374473	val-mlogloss:0.518416
[664]	train-mlogloss:0.374321	val-mlogloss:0.518435
[665]	train-mlogloss:0.37413	val-mlogloss:0.518449
[666]	train-mlogloss:0.373987	val-mlogloss:0.51843
[667]	train-mlogloss:0.373806	val-mlogloss:0.518416
[668]	train-mlogloss:0.373606	val-mlogloss:0.5184
[669]	train-mlogloss:0.37336	val-mlogloss:0.518376
[670]	train-mlogloss:0.373206	val-mlogloss:0.518355
[671]	train-mlogloss:0.373016	val-mlogloss:0.518318
[672]	train-mlogloss:0.372833	val-mlogloss:0.518269
[673]	train-mlogloss:0.372631	val-mlogloss:0.518276
[674]	train-mlogloss:0.37246	val-mlogloss:0.518311
[675]	train-mlogloss:0.372304	val-mlogloss:0.518334
[676]	train-mlogloss:0.372155	val-mlogloss:0.518289
[677]	train-mlogloss:0.371978	val-mlogloss:0.518272
[678]	train-mlogloss:0.371817	val-mlogloss:0.518277
[679]	train-mlogloss:0.371642	val-mlogloss:0.518262
[680]	train-mlogloss:0.371457	val-mlogloss:0.518282
[681]	train-mlogloss:0.371279	val-mlogloss:0.518296
[682]	train-mlogloss:0.371077	val-mlogloss:0.518276
[683]	train-mlogloss:0.370891	val-mlogloss:0.518262
[684]	train-mlogloss:0.370684	val-mlogloss:0.518271
[685]	train-mlogloss:0.370517	val-mlogloss:0.518232
[686]	train-mlogloss:0.37036	val-mlogloss:0.518218
[687]	train-mlogloss:0.370211	val-mlogloss:0.518189
[688]	train-mlogloss:0.370015	val-mlogloss:0.518175
[689]	train-mlogloss:0.369861	val-mlogloss:0.518146
[690]	train-mlogloss:0.369658	val-mlogloss:0.518139
[691]	train-mlogloss:0.369497	val-mlogloss:0.518102
[692]	train-mlogloss:0.369238	val-mlogloss:0.518114
[693]	train-mlogloss:0.369007	val-mlogloss:0.518125
[694]	train-mlogloss:0.368817	val-mlogloss:0.518094
[695]	train-mlogloss:0.368599	val-mlogloss:0.51806
[696]	train-mlogloss:0.368398	val-mlogloss:0.518058
[697]	train-mlogloss:0.368152	val-mlogloss:0.518043
[698]	train-mlogloss:0.367989	val-mlogloss:0.518049
[699]	train-mlogloss:0.367829	val-mlogloss:0.518048
[700]	train-mlogloss:0.36763	val-mlogloss:0.518039
[701]	train-mlogloss:0.367449	val-mlogloss:0.518005
[702]	train-mlogloss:0.367217	val-mlogloss:0.517995
[703]	train-mlogloss:0.367038	val-mlogloss:0.51793
[704]	train-mlogloss:0.366892	val-mlogloss:0.517867
[705]	train-mlogloss:0.366646	val-mlogloss:0.517857
[706]	train-mlogloss:0.366457	val-mlogloss:0.517864
[707]	train-mlogloss:0.366275	val-mlogloss:0.517877
[708]	train-mlogloss:0.366068	val-mlogloss:0.517873
[709]	train-mlogloss:0.365867	val-mlogloss:0.517843
[710]	train-mlogloss:0.365713	val-mlogloss:0.517842
[711]	train-mlogloss:0.365545	val-mlogloss:0.517859
[712]	train-mlogloss:0.365334	val-mlogloss:0.517843
[713]	train-mlogloss:0.365247	val-mlogloss:0.517829
[714]	train-mlogloss:0.365119	val-mlogloss:0.517832
[715]	train-mlogloss:0.364935	val-mlogloss:0.517809
[716]	train-mlogloss:0.364785	val-mlogloss:0.517823
[717]	train-mlogloss:0.364538	val-mlogloss:0.517778
[718]	train-mlogloss:0.364332	val-mlogloss:0.51777
[719]	train-mlogloss:0.364145	val-mlogloss:0.517785
[720]	train-mlogloss:0.363946	val-mlogloss:0.517765
[721]	train-mlogloss:0.363789	val-mlogloss:0.517737
[722]	train-mlogloss:0.363648	val-mlogloss:0.517761
[723]	train-mlogloss:0.363498	val-mlogloss:0.517766
[724]	train-mlogloss:0.363356	val-mlogloss:0.51776
[725]	train-mlogloss:0.363138	val-mlogloss:0.517736
[726]	train-mlogloss:0.362912	val-mlogloss:0.517714
[727]	train-mlogloss:0.362682	val-mlogloss:0.51766
[728]	train-mlogloss:0.362521	val-mlogloss:0.517623
[729]	train-mlogloss:0.36239	val-mlogloss:0.517638
[730]	train-mlogloss:0.362191	val-mlogloss:0.517609
[731]	train-mlogloss:0.361941	val-mlogloss:0.517614
[732]	train-mlogloss:0.361792	val-mlogloss:0.517605
[733]	train-mlogloss:0.361645	val-mlogloss:0.517602
[734]	train-mlogloss:0.361486	val-mlogloss:0.517589
[735]	train-mlogloss:0.361304	val-mlogloss:0.517536
[736]	train-mlogloss:0.361121	val-mlogloss:0.517486
[737]	train-mlogloss:0.360944	val-mlogloss:0.517457
[738]	train-mlogloss:0.360729	val-mlogloss:0.51743
[739]	train-mlogloss:0.360532	val-mlogloss:0.517408
[740]	train-mlogloss:0.360386	val-mlogloss:0.517397
[741]	train-mlogloss:0.360244	val-mlogloss:0.517401
[742]	train-mlogloss:0.360055	val-mlogloss:0.517388
[743]	train-mlogloss:0.359881	val-mlogloss:0.517356
[744]	train-mlogloss:0.359657	val-mlogloss:0.517296
[745]	train-mlogloss:0.359473	val-mlogloss:0.517263
[746]	train-mlogloss:0.359229	val-mlogloss:0.517274
[747]	train-mlogloss:0.358997	val-mlogloss:0.517219
[748]	train-mlogloss:0.358815	val-mlogloss:0.517178
[749]	train-mlogloss:0.358596	val-mlogloss:0.51717
[750]	train-mlogloss:0.358417	val-mlogloss:0.517164
[751]	train-mlogloss:0.358278	val-mlogloss:0.517166
[752]	train-mlogloss:0.358122	val-mlogloss:0.517155
[753]	train-mlogloss:0.357892	val-mlogloss:0.517107
[754]	train-mlogloss:0.357713	val-mlogloss:0.517099
[755]	train-mlogloss:0.357513	val-mlogloss:0.517086
[756]	train-mlogloss:0.357315	val-mlogloss:0.517099
[757]	train-mlogloss:0.35715	val-mlogloss:0.517132
[758]	train-mlogloss:0.35704	val-mlogloss:0.517161
[759]	train-mlogloss:0.356829	val-mlogloss:0.517124
[760]	train-mlogloss:0.35669	val-mlogloss:0.51714
[761]	train-mlogloss:0.356544	val-mlogloss:0.517113
[762]	train-mlogloss:0.356404	val-mlogloss:0.517111
[763]	train-mlogloss:0.356215	val-mlogloss:0.517107
[764]	train-mlogloss:0.35604	val-mlogloss:0.51709
[765]	train-mlogloss:0.355829	val-mlogloss:0.517056
[766]	train-mlogloss:0.355679	val-mlogloss:0.517021
[767]	train-mlogloss:0.355549	val-mlogloss:0.517044
[768]	train-mlogloss:0.355416	val-mlogloss:0.517017
[769]	train-mlogloss:0.355236	val-mlogloss:0.517032
[770]	train-mlogloss:0.35507	val-mlogloss:0.517013
[771]	train-mlogloss:0.354927	val-mlogloss:0.516987
[772]	train-mlogloss:0.354808	val-mlogloss:0.51697
[773]	train-mlogloss:0.354657	val-mlogloss:0.516946
[774]	train-mlogloss:0.354452	val-mlogloss:0.516964
[775]	train-mlogloss:0.354311	val-mlogloss:0.516944
[776]	train-mlogloss:0.354129	val-mlogloss:0.516934
[777]	train-mlogloss:0.353969	val-mlogloss:0.516935
[778]	train-mlogloss:0.353765	val-mlogloss:0.516911
[779]	train-mlogloss:0.353564	val-mlogloss:0.516926
[780]	train-mlogloss:0.353389	val-mlogloss:0.516906
[781]	train-mlogloss:0.353222	val-mlogloss:0.516887
[782]	train-mlogloss:0.353026	val-mlogloss:0.516844
[783]	train-mlogloss:0.352866	val-mlogloss:0.516856
[784]	train-mlogloss:0.352697	val-mlogloss:0.516829
[785]	train-mlogloss:0.352475	val-mlogloss:0.516787
[786]	train-mlogloss:0.352309	val-mlogloss:0.516768
[787]	train-mlogloss:0.352119	val-mlogloss:0.516761
[788]	train-mlogloss:0.35195	val-mlogloss:0.516746
[789]	train-mlogloss:0.351796	val-mlogloss:0.516754
[790]	train-mlogloss:0.351584	val-mlogloss:0.516747
[791]	train-mlogloss:0.351428	val-mlogloss:0.516751
[792]	train-mlogloss:0.35123	val-mlogloss:0.516733
[793]	train-mlogloss:0.351008	val-mlogloss:0.516708
[794]	train-mlogloss:0.350863	val-mlogloss:0.5167
[795]	train-mlogloss:0.350704	val-mlogloss:0.516729
[796]	train-mlogloss:0.350524	val-mlogloss:0.516739
[797]	train-mlogloss:0.350387	val-mlogloss:0.516728
[798]	train-mlogloss:0.35019	val-mlogloss:0.516731
[799]	train-mlogloss:0.349979	val-mlogloss:0.51673
[800]	train-mlogloss:0.349853	val-mlogloss:0.516706
[801]	train-mlogloss:0.349661	val-mlogloss:0.516701
[802]	train-mlogloss:0.349481	val-mlogloss:0.51669
[803]	train-mlogloss:0.349376	val-mlogloss:0.516729
[804]	train-mlogloss:0.349226	val-mlogloss:0.516685
[805]	train-mlogloss:0.349017	val-mlogloss:0.516664
[806]	train-mlogloss:0.348847	val-mlogloss:0.516668
[807]	train-mlogloss:0.348714	val-mlogloss:0.516691
[808]	train-mlogloss:0.348554	val-mlogloss:0.51668
[809]	train-mlogloss:0.348395	val-mlogloss:0.51668
[810]	train-mlogloss:0.348282	val-mlogloss:0.516699
[811]	train-mlogloss:0.348096	val-mlogloss:0.516711
[812]	train-mlogloss:0.347889	val-mlogloss:0.516707
[813]	train-mlogloss:0.347725	val-mlogloss:0.516685
[814]	train-mlogloss:0.347604	val-mlogloss:0.516657
[815]	train-mlogloss:0.347392	val-mlogloss:0.516655
[816]	train-mlogloss:0.347216	val-mlogloss:0.516639
[817]	train-mlogloss:0.347052	val-mlogloss:0.516614
[818]	train-mlogloss:0.346879	val-mlogloss:0.516602
[819]	train-mlogloss:0.346745	val-mlogloss:0.516616
[820]	train-mlogloss:0.346617	val-mlogloss:0.516602
[821]	train-mlogloss:0.346436	val-mlogloss:0.516587
[822]	train-mlogloss:0.346244	val-mlogloss:0.516569
[823]	train-mlogloss:0.34614	val-mlogloss:0.516553
[824]	train-mlogloss:0.345962	val-mlogloss:0.51655
[825]	train-mlogloss:0.345809	val-mlogloss:0.516522
[826]	train-mlogloss:0.345626	val-mlogloss:0.516524
[827]	train-mlogloss:0.345465	val-mlogloss:0.516547
[828]	train-mlogloss:0.345313	val-mlogloss:0.516504
[829]	train-mlogloss:0.345091	val-mlogloss:0.516472
[830]	train-mlogloss:0.344963	val-mlogloss:0.516464
[831]	train-mlogloss:0.344819	val-mlogloss:0.516464
[832]	train-mlogloss:0.344654	val-mlogloss:0.516469
[833]	train-mlogloss:0.344505	val-mlogloss:0.516484
[834]	train-mlogloss:0.344396	val-mlogloss:0.516498
[835]	train-mlogloss:0.34419	val-mlogloss:0.516501
[836]	train-mlogloss:0.344064	val-mlogloss:0.516524
[837]	train-mlogloss:0.343842	val-mlogloss:0.516541
[838]	train-mlogloss:0.343609	val-mlogloss:0.516531
[839]	train-mlogloss:0.343444	val-mlogloss:0.516518
[840]	train-mlogloss:0.343309	val-mlogloss:0.51648
[841]	train-mlogloss:0.343114	val-mlogloss:0.516478
[842]	train-mlogloss:0.342972	val-mlogloss:0.516465
[843]	train-mlogloss:0.342815	val-mlogloss:0.51646
[844]	train-mlogloss:0.342684	val-mlogloss:0.516442
[845]	train-mlogloss:0.342519	val-mlogloss:0.516437
[846]	train-mlogloss:0.34236	val-mlogloss:0.516432
[847]	train-mlogloss:0.342198	val-mlogloss:0.516407
[848]	train-mlogloss:0.342043	val-mlogloss:0.516377
[849]	train-mlogloss:0.341849	val-mlogloss:0.516355
[850]	train-mlogloss:0.341685	val-mlogloss:0.516313
[851]	train-mlogloss:0.341544	val-mlogloss:0.516314
[852]	train-mlogloss:0.341411	val-mlogloss:0.516301
[853]	train-mlogloss:0.34123	val-mlogloss:0.516277
[854]	train-mlogloss:0.34109	val-mlogloss:0.516255
[855]	train-mlogloss:0.340936	val-mlogloss:0.516271
[856]	train-mlogloss:0.340782	val-mlogloss:0.516263
[857]	train-mlogloss:0.34062	val-mlogloss:0.51625
[858]	train-mlogloss:0.340443	val-mlogloss:0.516268
[859]	train-mlogloss:0.340337	val-mlogloss:0.516212
[860]	train-mlogloss:0.34017	val-mlogloss:0.516205
[861]	train-mlogloss:0.340041	val-mlogloss:0.516201
[862]	train-mlogloss:0.339908	val-mlogloss:0.516198
[863]	train-mlogloss:0.339725	val-mlogloss:0.516169
[864]	train-mlogloss:0.339561	val-mlogloss:0.516156
[865]	train-mlogloss:0.339401	val-mlogloss:0.516202
[866]	train-mlogloss:0.339242	val-mlogloss:0.516194
[867]	train-mlogloss:0.339122	val-mlogloss:0.516188
[868]	train-mlogloss:0.338956	val-mlogloss:0.516202
[869]	train-mlogloss:0.338764	val-mlogloss:0.516181
[870]	train-mlogloss:0.338646	val-mlogloss:0.516149
[871]	train-mlogloss:0.33847	val-mlogloss:0.516144
[872]	train-mlogloss:0.338337	val-mlogloss:0.516152
[873]	train-mlogloss:0.338156	val-mlogloss:0.516149
[874]	train-mlogloss:0.33798	val-mlogloss:0.516181
[875]	train-mlogloss:0.337821	val-mlogloss:0.516165
[876]	train-mlogloss:0.337714	val-mlogloss:0.516149
[877]	train-mlogloss:0.337489	val-mlogloss:0.516124
[878]	train-mlogloss:0.337341	val-mlogloss:0.516108
[879]	train-mlogloss:0.337147	val-mlogloss:0.516059
[880]	train-mlogloss:0.337017	val-mlogloss:0.516059
[881]	train-mlogloss:0.336847	val-mlogloss:0.516056
[882]	train-mlogloss:0.33668	val-mlogloss:0.516076
[883]	train-mlogloss:0.336491	val-mlogloss:0.516078
[884]	train-mlogloss:0.336316	val-mlogloss:0.516087
[885]	train-mlogloss:0.336143	val-mlogloss:0.516118
[886]	train-mlogloss:0.335963	val-mlogloss:0.516126
[887]	train-mlogloss:0.3358	val-mlogloss:0.516098
[888]	train-mlogloss:0.335605	val-mlogloss:0.51607
[889]	train-mlogloss:0.335437	val-mlogloss:0.516047
[890]	train-mlogloss:0.335283	val-mlogloss:0.516047
[891]	train-mlogloss:0.335137	val-mlogloss:0.516056
[892]	train-mlogloss:0.334945	val-mlogloss:0.516072
[893]	train-mlogloss:0.334805	val-mlogloss:0.516069
[894]	train-mlogloss:0.334695	val-mlog
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-08 13:48:54  更:2021-12-08 13:50:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 1:22:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码