IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Pytorch之torch..nn.functional.one_hot() -> 正文阅读

[人工智能]Pytorch之torch..nn.functional.one_hot()

独热编码
one_hot(tensor, num_classes=-1) -> LongTensor

tensor:要编码的张量

num_calsses:类别数,就是下面例子中的列数

import torch
from torch.nn import functional as F

1、无num_classes?

列数与最大值有关:0 -> max,比如下面例子中最大值为8,所以0 -> 8,共9列(相当于labels共9类)
行数与数的个数有关,该例子共8个数,所以8行。
所以shape=(8,9)

x = torch.tensor([1, 1, 1, 3, 3, 4, 8, 5])

y1 = F.one_hot(x) # 只有一个参数张量x
print(f'x = ',x)  
print(f'x_shape = ',x.shape) 
print(f'y1 = ',y1)  
print(f'y1_shape = ',y1.shape)

结果?

x = tensor([1, 1, 1, 3, 3, 4, 8, 5])
x_shape = torch.Size([8])
y = tensor([[0, 1, 0, 0, 0, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0, 1, 0, 0, 0]])
y_shape = torch.Size([8, 9])

?

2、有num_classes

num_classes参数可以自行设置列数

y2 = F.one_hot(x, num_classes = 10)  # 这里num_classes设置为10,其中 10 > max{x}
print(f'x = ',x)  # 输出 x
print(f'x_shape = ',x.shape)  # 查看 x 的形状
print(f'y2 = ',y2)  # 输出 y
print(f'y2_shape = ',y2.shape)

结果

x =  tensor([1, 1, 1, 3, 3, 4, 8, 5])
x_shape =  torch.Size([8])
y2 =  tensor([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]])
y2_shape =  torch.Size([8, 10])

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-08 13:48:54  更:2021-12-08 13:51:13 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 1:32:17-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码