IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于麻雀算法改进的随机森林分类算法 - 附代码 -> 正文阅读

[人工智能]基于麻雀算法改进的随机森林分类算法 - 附代码

基于麻雀算法改进的随机森林分类算法


摘要:为了提高随机森林数据的分类预测准确率,对随机森林中的树木个数和最小叶子点数参数利用麻雀搜索算法进行优化。

1.数据集

数据的来源是 UCI 数据库中的肿瘤数据。数据信息如下:

data.mat 的大小为569*32。

其中第2列为标签数据,包含两类标签。

第3列到最后一列为特征数据。

所以RF模型的数据输入维度为30;输出维度为1。

2.RF模型

随机森林请自行参考相关机器学习书籍。

3.基于麻雀算法优化的RF

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

麻雀算法的优化参数为RF中树木个数和最小叶子节点数。适应度函数为RF对训练集和测试集的预测错误率,错误率越低越好。
f i n t e n e s s = e r r o r R a t e [ p r e d i c t ( t r a i n ) ] + e r r o r R a t e [ p r e d i c t ( t e s t ) ] finteness = errorRate[predict(train)] + errorRate[predict(test)] finteness=errorRate[predict(train)]+errorRate[predict(test)]

4.测试结果

数据划分信息如下: 训练集数量为500组,测试集数量为69组

麻雀参数设置如下:

%% 定义麻雀优化参数
pop=20; %种群数量
Max_iteration=30; %  设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点数
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,P_train,T_train,P_test,T_test);

请添加图片描述
请添加图片描述
请添加图片描述

寻优得到的树个数:38
最小叶子节点:1
麻雀优化随机森林结果展示:----------------
训练集正确率Accuracy = 100%(500/500)
测试集正确率Accuracy = 94.2029%(65/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:316 恶性:184
测试集病例总数:69 良性:41 恶性:28
良性乳腺肿瘤确诊:39 误诊:2 确诊率p1=95.122%
恶性乳腺肿瘤确诊:26 误诊:2 确诊率p2=92.8571%

传统随机森林结果展示:----------------
训练集正确率Accuracy = 99.8%(499/500)
测试集正确率Accuracy = 92.7536%(64/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:316 恶性:184
测试集病例总数:69 良性:41 恶性:28
良性乳腺肿瘤确诊:39 误诊:2 确诊率p1=95.122%
恶性乳腺肿瘤确诊:25 误诊:3 确诊率p2=89.2857%

从结果来看,经过改进后的SSA-RF明显优于未改进前的结果。

5.Matlab代码

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-11 15:43:23  更:2021-12-11 15:44:31 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 0:22:37-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码