IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【每日一更】<吴恩达-机器学习>单变量的线性回归&认识梯度下降 -> 正文阅读

[人工智能]【每日一更】<吴恩达-机器学习>单变量的线性回归&认识梯度下降

作者:recommend-item-box type_blog clearfix

目录

一、单变量线性回归 - Linear regession with one variable:

1.常用字符标识:

2.模型构建过程:

3.代价函数 - Cost Function:

4.Cost Function Intuition:

二、Gradient Descent -??梯度下降:?

1.梯度下降概述:

2.梯度下降数学定义:

3.解析梯度下降:?


一、单变量线性回归 - Linear regession with one variable:

Supervised Learning: Gives the "right answer" for each example in the data.

  • Regression Problem: Redict real-valued output
  • Classfication Problem: Discrate-value output

1.常用字符标识:

  • (x, y) = One training example

2.模型构建过程:

Univariate liner regression?

3.代价函数 - Cost Function:

Cost Function 代价函数(squared error function)数学表达式:

4.Cost Function Intuition:

  • m:训练样本的个数;
  • hθ(x):用参数θ和x预测出来的y值;
  • y:原训练样本中的y值,也就是标准答案
  • 上角标(i):第i个样本

????????代价函数衡量的是模型预测值h(θ) 与标准答案y之间的差异,所以总的代价函数J是h(θ)和y的函数,即J=f(h(θ), y)。又因为y都是训练样本中给定的,h(θ)由θ决定,所以,最终还是模型参数θ的改变导致了J的改变。对于不同的θ,对应不同的预测值h(θ),也就对应着不同的代价函数J的取值。变化过程为:

????????θ引起了h(θ)的改变,进而改变了J(θ)的取值。为了更直观的看到参数对代价函数的影响,举个简单的例子:

????????有训练样本{(0, 0), (1, 1), (2, 2), (4, 4)},即4对训练样本,每个样本对中第1个数表示x的值,第2个数表示y的值。这几个点很明显都是y=x这条直线上的点。如下图:

abc

????????常数项为0,所以可以取θ0=0,然后取不同的θ1,可以得到不同的拟合直线。当θ1=0时,拟合的直线是y=0,即蓝色线段,此时距离样本点最远,代价函数的值(误差)也最大;当θ1=1时,拟合的直线是y=x,即绿色线段,此时拟合的直线经过每一个样本点,代价函数的值为0。

????????通过下图可以查看随着θ1的变化,J(θ)的变化情况:

????????从图中可以很直观的看到θ对代价函数的影响,当θ1=1时,代价函数J(θ)取到最小值。因为线性回归模型的代价函数(均方误差)的性质非常好,因此也可以直接使用代数的方法,求J(θ)的一阶导数为0的点,就可以直接求出最优的θ值(正规方程法)。


二、Gradient Descent -??梯度下降:?

1.梯度下降概述:

目的:最小化函数J

通过不断变化参数?\theta_o?和?\theta_1?的值,获取函数J的最小值或者局部最小值。

2.梯度下降数学定义:

  • := 表示赋值Assiagnment
  • = 表示真假判断
  • \alpha?学习率learning rate,用来确定梯度下降时步长大小
  • 同步更新

3.解析梯度下降:?

案例说明:?

?

  • 情形1:单调下降,导数为负(梯度为负),要想找到函数的最小值所对应的自变量的值(曲线最低点对应x的值)。x值会水平向右移动,也就是让x增大,此时随着x增大,导数(梯度)的绝对值是减小的
  • 情形2:单调上升,导数为正(梯度为正),要想找到函数的自变量的值(曲线最低点对应x的值)。x向左移动,也就是让x减小,此时随着x减小,导数(梯度)的绝对值是减小的(也就是梯度下降)。

?注意:

  • If?\alpha?is too small, gradient descent can be slow
  • If?\alpha?is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

????????当目前如果已经处于局部最优时,梯度下降法更新其实什么都没有做,因为在该点处的斜率值为0,他会始终保持在最优值处。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-14 15:56:46  更:2021-12-14 15:57:20 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 0:39:29-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码