我们已经在这方面看到了一些令人鼓舞的早期进展。例如,研究人员已经把深度学习用于医学诊断,开发出各种视网膜病变的分类算法,其精度已经与人类专家相当。 另一个例子是,一个经过训练的人工智能算法对良性和恶性皮肤病的分类精度,已经达到经专业认证的皮肤病医生的水准。在急诊室里,深度学习现在可以帮助我们判定一个病人的CT扫描是否显示他有中风的迹象。新的人工智能算法不仅使识别这些信号的精度可以媲美医学专家,更为重要的是,它的速度是人类的150倍! 当然,还有让CASP与会人员充满敬畏的AlphaFold深度学习系统。在CASP竞赛中,每个参赛队伍拿到的是90个蛋白质的氨基酸的线性序列,这些蛋白质的3D形状已知但是没有公开发表。参赛队伍要计算出蛋白质是如何折叠的。通过筛选过去已知的蛋白质折叠模式,AlphaFold的平均预测精度超过了所有其他97支参赛队伍。 这些人工智能技术的成功运用都具备了深度学习的两个基本要素:大量的训练数据和清晰的分类方式。例如,为了检测皮肤癌,研究人员给算法输入数百万的皮肤病变的图像,并告知算法每一幅图像对应的是良性还是恶性病变。由于算法与皮肤病专家所受的训练是不一样的,算法也许看不到皮肤病专家所看到的一些模式,但这也意味着,人工智能系统也可能看到一些皮肤病专家所看不到的模式。 哪些科学领域能从这些进展中收益最多呢?我们还是再看看深度学习的两个基本要素:大量的数据以及可用于标记数据的清晰边界。这意味着那些最能从人工智能技术直接受益的科学领域需要足够的窄,从而能够有清晰的数据标记策略。这些领域还要足够的深,使得人工智能系统以科学家无法做到的方式看到所有的数据以发现新的结果。 最为重要的是,尽管机器正在快速改进精度和效率,但科学最为激动人心的未来既不属于人类也不属于机器,而是有赖于两者之间的战略伙伴关系。
|