IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 《知识图谱从入门到实践》06 基于Jieba词性标注获取文本三元组关系 -> 正文阅读

[人工智能]《知识图谱从入门到实践》06 基于Jieba词性标注获取文本三元组关系

书山有路勤为径,学海无涯苦作舟

1.基于Jieba实现文本的三元组抽取

定义函数

# coding=utf-8
import re, os
import jieba.posseg as pseg

class ExtractEvent:
    def __init__(self):
        self.map_dict = self.load_mapdict()
        self.minlen = 2
        self.maxlen = 30
        self.keywords_num = 20
        self.limit_score = 10
        self.IP = "(([NERMQ]*P*[ABDP]*)*([ABDV]{1,})*([NERMQ]*)*([VDAB]$)?([NERMQ]*)*([VDAB]$)?)*"
        self.IP = "([NER]*([PMBQADP]*[NER]*)*([VPDA]{1,}[NEBRVMQDA]*)*)"
        self.MQ = '[DP]*M{1,}[Q]*([VN]$)?'
        self.VNP = 'V*N{1,}'
        self.NP = '[NER]{1,}'
        self.REN = 'R{2,}'
        self.VP = 'P?(V|A$|D$){1,}'
        self.PP = 'P?[NERMQ]{1,}'
        self.SPO_n = "n{1,}"
        self.SPO_v = "v{1,}"
        self.stop_tags = {'u', 'wp', 'o', 'y', 'w', 'f', 'u', 'c', 'uj', 'nd', 't', 'x'}
        self.combine_words = {"首先", "然后", "之前", "之后", "其次", "接着"}

    """构建映射字典"""
    def load_mapdict(self):
        tag_dict = {
            'B': 'b'.split(),  # 时间词
            'A': 'a d'.split(),  # 时间词
            'D': "d".split(),  # 限定词
            'N': "n j s zg en l r".split(),  #名词
            "E": "nt nz ns an ng".split(),  #实体词
            "R": "nr".split(),  #人物
            'G': "g".split(),  #语素
            'V': "vd v va i vg vn g".split(), #动词
            'P': "p f".split(),  #介词
            "M": "m t".split(),  #数词
            "Q": "q".split(), #量词
            "v": "V".split(), #动词短语
            "n": "N".split(), #名词介宾短语
        }
        map_dict = {}
        for flag, tags in tag_dict.items():
            for tag in tags:
                map_dict[tag] = flag
        return map_dict

    """根据定义的标签,对词性进行标签化"""
    def transfer_tags(self, postags):
        tags = [self.map_dict.get(tag[:2], 'W') for tag in postags]
        return ''.join(tags)

    """抽取出指定长度的ngram"""
    def extract_ngram(self, pos_seq, regex):
        ss = self.transfer_tags(pos_seq)
        def gen():
            for s in range(len(ss)):
                for n in range(self.minlen, 1 + min(self.maxlen, len(ss) - s)):
                    e = s + n
                    substr = ss[s:e]
                    if re.match(regex + "$", substr):
                        yield (s, e)
        return list(gen())

    '''抽取ngram'''
    def extract_sentgram(self, pos_seq, regex):
        ss = self.transfer_tags(pos_seq)
        def gen():
            for m in re.finditer(regex, ss):
                yield (m.start(), m.end())
        return list(gen())

    """指示代词替换,消解处理"""
    def cite_resolution(self, words, postags, persons):
        if not persons and 'r' not in set(postags):
            return words, postags
        elif persons and 'r' in set(postags):
            cite_index = postags.index('r')
            if words[cite_index] in {"其", "他", "她", "我"}:
                words[cite_index] = persons[-1]
                postags[cite_index] = 'nr'
        elif 'r' in set(postags):
            cite_index = postags.index('r')
            if words[cite_index] in {"为何", "何", "如何"}:
                postags[cite_index] = 'w'
        return words, postags

    """抽取量词性短语"""
    def extract_mqs(self, wds, postags):
        phrase_tokspans = self.extract_sentgram(postags, self.MQ)
        if not phrase_tokspans:
            return []
        phrases = [''.join(wds[i[0]:i[1]])for i in phrase_tokspans]
        return phrases

    '''抽取动词性短语'''
    def get_ips(self, wds, postags):
        ips = []
        phrase_tokspans = self.extract_sentgram(postags, self.IP)
        if not phrase_tokspans:
            return []
        phrases = [''.join(wds[i[0]:i[1]])for i in phrase_tokspans]
        phrase_postags = [''.join(postags[i[0]:i[1]]) for i in phrase_tokspans]
        for phrase, phrase_postag_ in zip(phrases, phrase_postags):
            if not phrase:
                continue
            phrase_postags = ''.join(phrase_postag_).replace('m', '').replace('q','').replace('a', '').replace('t', '')
            if phrase_postags.startswith('n') or phrase_postags.startswith('j'):
                has_subj = 1
            else:
                has_subj = 0
            ips.append((has_subj, phrase))
        return ips

    """分短句处理"""
    def split_short_sents(self, text):
        return [i for i in re.split(r'[,,]', text) if len(i)>2]
    """分段落"""
    def split_paras(self, text):
        return [i for i in re.split(r'[\n\r]', text) if len(i) > 4]

    """分长句处理"""
    def split_long_sents(self, text):
        return [i for i in re.split(r'[;。:; :??!!【】▲丨|]', text) if len(i) > 4]

    """移出噪声数据"""
    def remove_punc(self, text):
        text = text.replace('\u3000', '').replace("'", '').replace('“', '').replace('”', '').replace('▲','').replace('” ', "”")
        tmps = re.findall('[\(|(][^\((\))]*[\)|)]', text)
        for tmp in tmps:
            text = text.replace(tmp, '')
        return text

    """保持专有名词"""
    def zhuanming(self, text):
        books = re.findall('[<《][^《》]*[》>]', text)
        return books

    """对人物类词语进行修正"""
    def modify_nr(self, wds, postags):
        phrase_tokspans = self.extract_sentgram(postags, self.REN)
        wds_seq = ' '.join(wds)
        pos_seq = ' '.join(postags)
        if not phrase_tokspans:
            return wds, postags
        else:
            wd_phrases = [' '.join(wds[i[0]:i[1]]) for i in phrase_tokspans]
            postag_phrases = [' '.join(postags[i[0]:i[1]]) for i in phrase_tokspans]
            for wd_phrase in wd_phrases:
                tmp = wd_phrase.replace(' ', '')
                wds_seq = wds_seq.replace(wd_phrase, tmp)
            for postag_phrase in postag_phrases:
                pos_seq = pos_seq.replace(postag_phrase, 'nr')
        words = [i for i in wds_seq.split(' ') if i]
        postags = [i for i in pos_seq.split(' ') if i]
        return words, postags

    """对人物类词语进行修正"""
    def modify_duplicate(self, wds, postags, regex, tag):
        phrase_tokspans = self.extract_sentgram(postags, regex)
        wds_seq = ' '.join(wds)
        pos_seq = ' '.join(postags)
        if not phrase_tokspans:
            return wds, postags
        else:
            wd_phrases = [' '.join(wds[i[0]:i[1]]) for i in phrase_tokspans]
            postag_phrases = [' '.join(postags[i[0]:i[1]]) for i in phrase_tokspans]
            for wd_phrase in wd_phrases:
                tmp = wd_phrase.replace(' ', '')
                wds_seq = wds_seq.replace(wd_phrase, tmp)
            for postag_phrase in postag_phrases:
                pos_seq = pos_seq.replace(postag_phrase, tag)
        words = [i for i in wds_seq.split(' ') if i]
        postags = [i for i in pos_seq.split(' ') if i]
        return words, postags

    '''对句子进行分词处理'''
    def cut_wds(self, sent):
        wds = list(pseg.cut(sent))
        postags = [w.flag for w in wds]
        words = [w.word for w in wds]
        return self.modify_nr(words, postags)

    """移除噪声词语"""
    def clean_wds(self, words, postags):
        wds = []
        poss =[]
        for wd, postag in zip(words, postags):
            if postag[0].lower() in self.stop_tags:
                continue
            wds.append(wd)
            poss.append(postag[:2])
        return wds, poss

    """检测是否成立, 肯定需要包括名词"""
    def check_flag(self, postags):
        if not {"v", 'a', 'i'}.intersection(postags):
            return 0
        return 1

    """识别出人名实体"""
    def detect_person(self, words, postags):
        persons = []
        for wd, postag in zip(words, postags):
            if postag == 'nr':
                persons.append(wd)
        return persons

    """识别出名词性短语"""
    def get_nps(self, wds, postags):
        phrase_tokspans = self.extract_sentgram(postags, self.NP)
        if not phrase_tokspans:
            return [],[]
        phrases_np = [''.join(wds[i[0]:i[1]]) for i in phrase_tokspans]
        return phrase_tokspans, phrases_np

    """识别出介宾短语"""
    def get_pps(self, wds, postags):
        phrase_tokspans = self.extract_sentgram(postags, self.PP)
        if not phrase_tokspans:
            return [],[]
        phrases_pp = [''.join(wds[i[0]:i[1]]) for i in phrase_tokspans]
        return phrase_tokspans, phrases_pp

    """识别出动词短语"""
    def get_vps(self, wds, postags):
        phrase_tokspans = self.extract_sentgram(postags, self.VP)
        if not phrase_tokspans:
            return [],[]
        phrases_vp = [''.join(wds[i[0]:i[1]]) for i in phrase_tokspans]
        return phrase_tokspans, phrases_vp

    """抽取名动词性短语"""
    def get_vnps(self, s):
        wds, postags = self.cut_wds(s)
        if not postags:
            return [], []
        if not (postags[-1].endswith("n") or postags[-1].endswith("l") or postags[-1].endswith("i")):
            return [], []
        phrase_tokspans = self.extract_sentgram(postags, self.VNP)
        if not phrase_tokspans:
            return [], []
        phrases_vnp = [''.join(wds[i[0]:i[1]]) for i in phrase_tokspans]
        phrase_tokspans2 = self.extract_sentgram(postags, self.NP)
        if not phrase_tokspans2:
            return [], []
        phrases_np = [''.join(wds[i[0]:i[1]]) for i in phrase_tokspans2]
        return phrases_vnp, phrases_np

    """提取短语"""
    def phrase_ip(self, content):
        try:
            spos = []
            events = []
            content = self.remove_punc(content)
            paras = self.split_paras(content)
            for para in paras:
                long_sents = self.split_long_sents(para)
                for long_sent in long_sents:
                    persons = []
                    short_sents = self.split_short_sents(long_sent)
                    for sent in short_sents:
                        words, postags = self.cut_wds(sent)
                        person = self.detect_person(words, postags)
                        words, postags = self.cite_resolution(words, postags, persons)
                        words, postags = self.clean_wds(words, postags)
                        #print(words,postags)
                        ips = self.get_ips(words, postags)
                        persons += person
                        for ip in ips:
                            events.append(ip[1])
                            wds_tmp = []
                            postags_tmp = []
                            words, postags = self.cut_wds(ip[1])
                            verb_tokspans, verbs = self.get_vps(words, postags)
                            pp_tokspans, pps = self.get_pps(words, postags)
                            tmp_dict = {str(verb[0]) + str(verb[1]): ['V', verbs[idx]] for idx, verb in enumerate(verb_tokspans)}
                            pp_dict = {str(pp[0]) + str(pp[1]): ['N', pps[idx]] for idx, pp in enumerate(pp_tokspans)}
                            tmp_dict.update(pp_dict)
                            sort_keys = sorted([int(i) for i in tmp_dict.keys()])
                            for i in sort_keys:
    #                             print(i)
                                if i < 10:
                                    i = '0' + str(i)
                                wds_tmp.append(tmp_dict[str(i)][-1])
                                postags_tmp.append(tmp_dict[str(i)][0])
                            wds_tmp, postags_tmp = self.modify_duplicate(wds_tmp, postags_tmp, self.SPO_v, 'V')
                            wds_tmp, postags_tmp = self.modify_duplicate(wds_tmp, postags_tmp, self.SPO_n, 'N')
                            if len(postags_tmp) < 2:
                                continue
                            seg_index = []
                            i = 0
                            for wd, postag in zip(wds_tmp, postags_tmp):
                                if postag == 'V':
                                    seg_index.append(i)
                                i += 1
                            spo = []
                            for indx, seg_indx in enumerate(seg_index):
                                if indx == 0:
                                    pre_indx = 0
                                else:
                                    pre_indx = seg_index[indx-1]
                                if pre_indx < 0:
                                    pre_indx = 0
                                if seg_indx == 0:
                                    spo.append(('', wds_tmp[seg_indx], ''.join(wds_tmp[seg_indx+1:])))
                                elif seg_indx > 0 and indx < 1:
                                    spo.append((''.join(wds_tmp[:seg_indx]), wds_tmp[seg_indx], ''.join(wds_tmp[seg_indx + 1:])))
                                else:
                                    spo.append((''.join(wds_tmp[pre_indx+1:seg_indx]), wds_tmp[seg_indx], ''.join(wds_tmp[seg_indx + 1:])))
                            spos += spo
        except:
                print('报错')

        return events, spos

主函数路口

import time
handler = ExtractEvent()
start = time.time()

content='我购买了一件玩具,孩子非常喜欢这个玩具,但是质量不太好。希望商家能够保障商品质量,不要再出现类似问题。'
events, spos = handler.phrase_ip(content)
spos = [i for i in spos if i[0] and i[2]]
for spo in spos:
    print(spo)

输出

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-23 15:46:04  更:2021-12-23 15:47:53 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 21:10:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码