IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 竞争性自适应重加权算法-CARS-python版 -> 正文阅读

[人工智能]竞争性自适应重加权算法-CARS-python版

算法简介

竞争性自适应重加权采样法(competitive adapative reweighted sampling, CARS)是一种结合蒙特卡洛采样与PLS模型回归系数的特征变量选择方法,模仿达尔文理论中的 ”适者生存“ 的原则(Li et al., 2009)。CARS 算法中,每次通过自适应加权采样(adapative reweighted sampling, ARS)保留PLS模型中 回归系数绝对值权重较大的点作为新的子集,去掉权值较小的点,然后基于新的子集建立PLS模型,经过多次计算,选择PLS模型交互验证均方根误差(RMSECV)最小的子集中的波长作为特征波长。

CARS算法的具体过程如下。

  1. 采用 蒙特卡洛采样法,每次随机从校正集中选择一定数量(一般为80%)的样本进入建模集,剩余的20%作为预测集建立PLS模型。蒙特卡洛的采样次数(N)需要提前设定。记录每一次采样过程PLS模型中的回归系数的绝对值权重, ∣ b i ∣ |b_i| bi?为第i个变量的回归系数绝对值, w i w_i wi?为第i个变量的回归系数绝对值权重

    w i = ∣ b i ∣ / ∑ i = 1 m ∣ b i ∣ w_i=|b_i|/\sum_{i=1}^m|b_i| wi?=bi?/i=1m?bi?
    m为每次采样中剩余的变量数。

  2. 利用指数衰减函数(exponentially decreasing function, EDF)强行去除回归系数绝对值权重相对较小的波长。在第i次基于MC采样建立PLS模型时,根据EDF得到保留的波长点的比例 R i R_i Ri?

    R i = μ e ? k i R_i=\mu e^{-k_i} Ri?=μe?ki?
    式中, μ \mu μ和k是常数,可以按照以下两种情况计算。

    1. 在一次采样并进行相应计算时,所有的波长都参与了建模分析,因此此时保留的波长点的比例为1。

    2. 在最后一次采样在(第N次)完成并进行相应计算时,只剩下两个波长参与PLS建模,此时保留的波长点的比例为 2 / n 2/n 2/n,其中 n n n是原始波长点数。
      由以上最初及最后一次采样的情况可知, μ \mu μ和k的计算公式为
      μ = ( n 2 ) 1 N ? 1 , k = l n ( n n ) N ? 1 \mu=(\cfrac{n}{2})^{\cfrac{1}{N-1}},k=\cfrac{ln(\cfrac{n}{n})}{N-1} μ=(2n?)N?11?,k=N?1ln(nn?)?

  3. 在每次采样时,都从上一次采样时的变量数中采用自适应加权采样(ARS)选择数量为 R i ? n R_i * n Ri??n个的波长变量,进行PLS建模,计算RMSECV。

  4. 在N次采样完成之后,CARS 算法得到了N组候选的特征波长子集,以及对应的RMSECV值,选择RMSECV最小值所对应的波长变量子集为特征波长。

说明: 竞争性自适应重加权算法(CARS)是通过自适应重加权采样(ARS)技术选择出PLS模型中回归系数绝对值大的波长点,去掉权重小的波长点,利用交互验证选出RMSECV指最低的子集,可有效寻出最优变量组合。

快速使用

1.读取数据

# 导入 pandas 读取数据
import pandas as pd
import numpy as np

# 读取数据
data = pd.read_csv("./data/peach_spectra_brix.csv")

2. 数据处理

# m * n 
print("数据矩阵 data.shape:",data.shape)

# 50个样本, 600个 波段 第一列是 桃子糖度值 需要分离开
X = data.values[:,1:] 
# 等同操作
#X = data.drop(['Brix'], axis=1)

y = data.values[:,0]
# 等同操作
# y = data.loc[:,'Brix'].values

print(f"X.shape:{X.shape}, y.shape:{y.shape}")

3. 工具导入

import CARS

4. 建模筛选

lis = CARS.CARS_Cloud(X,y)
print("获取波段数:",len(lis))
print(lis)

5. 数据导出

X_ = X[:,lis]

注意事项

cars具有随机性,建议运行五次选取最佳rmsecv及波段数。

CARS开发使用的PLS 是基于 sklearn 的 NIPALS 并非 MATLAB 的 SIMPLS, 因此 系数趋势图 绘制不理想,暂时砍掉了。除此之外,该版本全部基于python开发完成,与MATLAB存在较大差异在所难免,核心算法思想一致,请自行选择,后续会上传 MATLAB版本 CARS。

示例数据来源:nirpyresearch.com

仓库地址 https://gitee.com/aBugsLife/CARS

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-12-28 22:55:34  更:2021-12-28 22:58:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 20:32:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码