IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习_06:SVM支持向量机 -> 正文阅读

[人工智能]机器学习_06:SVM支持向量机

实验背景

SVM算法在上世纪60年代就已经被提出,学名为Support Vector Machine,是一种非常经典的监督学习方法。我在看来,SVM是最好的现成的分类器,这里说的“现成”指的是分类器不加修改即可直接使用。这意味着在数据上应用基本形式(没有针对数据进行修改)的SVM分类器就可以得到低错误率的结果。SVM能够对训练集之外的数据点做出很好的分类决策。
SVM有很多实现方法,本篇博客只介绍最流行的一种方法,序列最小优化(Sequential Minimal Optimization,SMO)算法。

1.SVM算法原理

1.1.分隔超平面

首先我们要介绍下SVM支持向量机的目的,如图所示
在这里插入图片描述
对于整个图像来说,如何找到一条直线将+,-,完美的分开是很困难的,而这条将数据集分开的直线称为分隔超平面。图像中的数据点都在二维平面上,所以分隔超平面就是一条直线,如果数据集是三维的,那分隔超平面就是一个平面。更高维的情况以此类推。SVM的目的就是找到这个最佳的分隔超平面。而SVM中的支持向量,就是指离分隔超平面最近的那些点,而这些点离分隔面越大的话,这个分隔面就越接近完美分隔面。

1.2.最大间隔

1.2.1.寻找最小间隔数据点

在这里插入图片描述
如图所示,对于超平面来说,距离其最近的点就是被圆圈框起来的一个+号和两个-号。
假设这个超平面方程为:
在这里插入图片描述
那么位于超平面上方的支持向量所经过的直线可以表达为:
在这里插入图片描述
位于超平面下方的支持向量所经过的直线可以表达为:
在这里插入图片描述
根据直线之间的距离计算公式,最后可以化为:
在这里插入图片描述
将问题化为寻找参数w和b,使得下述公式最大
在这里插入图片描述

1.2.2.拉格朗日乘子法

为了更好的求得最大值,我们引入拉格朗日乘子得到对应的拉格朗日函数
在这里插入图片描述
然后,令L(w,b,α)对w和b的偏导为零
在这里插入图片描述
将w,b带回原式得
在这里插入图片描述
等价形式为
在这里插入图片描述
最终模型:
在这里插入图片描述

其中约束条件为:
在这里插入图片描述

1.3.SMO高效优化算法

SMO算法的工作原理是:每次循环中选择两个合适的α进行优化处理。一旦找到一对合适的α,就增大其中一个的同时减小另一个。
流程图大致如下:
在这里插入图片描述
公式表达为:
在这里插入图片描述
得到最优解为:
在这里插入图片描述
带回原式解得w和b为
在这里插入图片描述
得到分类平面:
在这里插入图片描述
伪代码大致如下:
创建一个α向量并将其初始化为0向量
当迭代次数小于最大迭代次数时(外循环)
对数据集中的每个数据向量(内循环);
如果该数据向量可以被优化:
随机选择另外一个数据向量
同时优化这两个向量
如果两个向量都不能被优化,退出内循环
如果所有向量都没被优化,增加迭代数目,继续下一次循环

2.实验结果

from time import sleep
import matplotlib.pyplot as plt
import numpy as np
import random
import types
"""
函数说明:读取数据

输入:
    fileName - 文件名
输出:
    dataMat - 数据矩阵
    labelMat - 数据标签
"""
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():                                     #逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])      #添加数据
        labelMat.append(float(lineArr[2]))                          #添加标签
    return dataMat,labelMat

"""
函数说明:数据可视化

输入:
    dataMat - 数据矩阵
    labelMat - 数据标签
输出:
    无
"""
def showDataSet(dataMat, labelMat):
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) #负样本散点图
    plt.show()

"""
函数说明:随机选择alpha

输入:
    i - alpha
    m - alpha参数个数
输出:
    j -
"""
def selectJrand(i, m):
    j = i                                 #选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

"""
函数说明:修剪alpha

输入:
    aj - alpha值
    H - alpha上限
    L - alpha下限
输出:
    aj - alpah值
"""
def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

"""
函数说明:简化版SMO算法

输入:
    dataMatIn - 数据矩阵
    classLabels - 数据标签
    C - 松弛变量
    toler - 容错率
    maxIter - 最大迭代次数
输出:
    无
"""
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    #转换为numpy的mat存储
    dataMatrix = np.mat(dataMatIn); labelMat = np.mat(classLabels).transpose()
    #初始化b参数,统计dataMatrix的维度
    b = 0; m,n = np.shape(dataMatrix)
    #初始化alpha参数,设为0
    alphas = np.mat(np.zeros((m,1)))
    #初始化迭代次数
    iter_num = 0
    #最多迭代matIter次
    while (iter_num < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            #步骤1:计算误差Ei
            fXi = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])
            #优化alpha,更设定一定的容错率。
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                #随机选择另一个与alpha_i成对优化的alpha_j
                j = selectJrand(i,m)
                #步骤1:计算误差Ej
                fXj = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                #保存更新前的aplpha值,使用深拷贝
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                #步骤2:计算上下界L和H
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print("L==H"); continue
                #步骤3:计算eta
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print("eta>=0"); continue
                #步骤4:更新alpha_j
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                #步骤5:修剪alpha_j
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print("alpha_j变化太小"); continue
                #步骤6:更新alpha_i
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
                #步骤7:更新b_1和b_2
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                #步骤8:根据b_1和b_2更新b
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                #统计优化次数
                alphaPairsChanged += 1
                #打印统计信息
                print("第%d次迭代 样本:%d, alpha优化次数:%d" % (iter_num,i,alphaPairsChanged))
        #更新迭代次数
        if (alphaPairsChanged == 0): iter_num += 1
        else: iter_num = 0
        print("迭代次数: %d" % iter_num)
    return b,alphas


class optStruct:
    """
    数据结构,维护所有需要操作的值
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
    """
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn                                #数据矩阵
        self.labelMat = classLabels                        #数据标签
        self.C = C                                         #松弛变量
        self.tol = toler                                 #容错率
        self.m = np.shape(dataMatIn)[0]                 #数据矩阵行数
        self.alphas = np.mat(np.zeros((self.m,1)))         #根据矩阵行数初始化alpha参数为0
        self.b = 0                                         #初始化b参数为0
        self.eCache = np.mat(np.zeros((self.m,2)))         #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
        self.K = np.mat(np.zeros((self.m,self.m)))        #初始化核K
        for i in range(self.m):                            #计算所有数据的核K
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def kernelTrans(X, A, kTup):
    """
    通过核函数将数据转换更高维的空间
    Parameters:
        X - 数据矩阵
        A - 单个数据的向量
        kTup - 包含核函数信息的元组
    输出:
        K - 计算的核K
    """
    m,n = np.shape(X)
    K = np.mat(np.zeros((m,1)))
    if kTup[0] == 'lin': K = X * A.T                       #线性核函数,只进行内积。
    elif kTup[0] == 'rbf':                                 #高斯核函数,根据高斯核函数公式进行计算
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = np.exp(K/(-1*kTup[1]**2))                     #计算高斯核K
    else: raise NameError('核函数无法识别')
    return K                                             #返回计算的核K

def calcEk(oS, k):
    """
    计算误差
    Parameters:
        oS - 数据结构
        k - 标号为k的数据
    输出:
        Ek - 标号为k的数据误差
    """
    fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJ(i, oS, Ei):
    """
    内循环启发方式2
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
        Ei - 标号为i的数据误差
    输出:
        j, maxK - 标号为j或maxK的数据的索引值
        Ej - 标号为j的数据误差
    """
    maxK = -1; maxDeltaE = 0; Ej = 0                         #初始化
    oS.eCache[i] = [1,Ei]                                      #根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:,0].A)[0]        #返回误差不为0的数据的索引值
    if (len(validEcacheList)) > 1:                            #有不为0的误差
        for k in validEcacheList:                           #遍历,找到最大的Ek
            if k == i: continue                             #不计算i,浪费时间
            Ek = calcEk(oS, k)                                #计算Ek
            deltaE = abs(Ei - Ek)                            #计算|Ei-Ek|
            if (deltaE > maxDeltaE):                        #找到maxDeltaE
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej                                        #返回maxK,Ej
    else:                                                   #没有不为0的误差
        j = selectJrand(i, oS.m)                            #随机选择alpha_j的索引值
        Ej = calcEk(oS, j)                                    #计算Ej
    return j, Ej                                             #j,Ej

def updateEk(oS, k):
    """
    计算Ek,并更新误差缓存
    输入:
        oS - 数据结构
        k - 标号为k的数据的索引值
    输出:
        无
    """
    Ek = calcEk(oS, k)                                        #计算Ek
    oS.eCache[k] = [1,Ek]                                    #更新误差缓存

def innerL(i, oS):
    """
    优化的SMO算法
    输入:
        i - 标号为i的数据的索引值
        oS - 数据结构
    输出:
        1 - 有任意一对alpha值发生变化
        0 - 没有任意一对alpha值发生变化或变化太小
    """
    #步骤1:计算误差Ei
    Ei = calcEk(oS, i)
    #优化alpha,设定一定的容错率。
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        #使用内循环启发方式2选择alpha_j,并计算Ej
        j,Ej = selectJ(i, oS, Ei)
        #保存更新前的aplpha值,使用深拷贝
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        #步骤2:计算上下界L和H
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            print("L==H")
            return 0
        #步骤3:计算eta
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
        if eta >= 0:
            print("eta>=0")
            return 0
        #步骤4:更新alpha_j
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
        #步骤5:修剪alpha_j
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        #更新Ej至误差缓存
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("alpha_j变化太小")
            return 0
        #步骤6:更新alpha_i
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        #更新Ei至误差缓存
        updateEk(oS, i)
        #步骤7:更新b_1和b_2
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        #步骤8:根据b_1和b_2更新b
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else:
        return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
    """
    输入:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        maxIter - 最大迭代次数
        kTup - 包含核函数信息的元组
    输出:
        oS.b - SMO算法计算的b
        oS.alphas - SMO算法计算的alphas
    """
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup)                #初始化数据结构
    iter = 0                                                                                         #初始化当前迭代次数
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):                            #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
        alphaPairsChanged = 0
        if entireSet:                                                                                #遍历整个数据集
            for i in range(oS.m):
                alphaPairsChanged += innerL(i,oS)                                                    #使用优化的SMO算法
                print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:                                                                                         #遍历非边界值
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]                        #遍历不在边界0和C的alpha
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet:                                                                                #遍历一次后改为非边界遍历
            entireSet = False
        elif (alphaPairsChanged == 0):                                                                #如果alpha没有更新,计算全样本遍历
            entireSet = True
        print("迭代次数: %d" % iter)
    return oS.b,oS.alphas                                                                             #返回SMO算法计算的b和alphas

def img2vector(filename):
    returnVect = np.zeros((1, 1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0, 32 * i + j] = int(lineStr[j])
    return returnVect


def loadImages(dirName):
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)  
    m = len(trainingFileList)
    trainingMat = np.zeros((m, 1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0] 
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9:
            hwLabels.append(-1)
        else:
            hwLabels.append(1)
        trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels

def testDigits(kTup=('rbf', 10)):
    dataArr, labelArr = loadImages('D:/vscode/python/.vscode/trainingDigits')
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat = np.mat(dataArr);
    labelMat = np.mat(labelArr).transpose()
    svInd = np.nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]
    labelSV = labelMat[svInd];
    print("支持向量个数: %d " % np.shape(sVs)[0])
    m, n = np.shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("训练集错误率: %f" % (float(errorCount) / m))
    dataArr, labelArr = loadImages('D:/vscode/python/.vscode/testDigits')
    errorCount = 0
    datMat = np.mat(dataArr);
    labelMat = np.mat(labelArr).transpose()
    m, n = np.shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("测试集错误率: %f" % (float(errorCount) / m))


if __name__ == '__main__':
    testDigits()

在这里插入图片描述
支持向量数量有点过多,应该可以进一步优化

3.总结

1.SVM支持向量机是一种分类器,它的泛化错误率低,具有良好的学习能力,且得到的结果具有很好的推广性。
2.SVM支持向量机通过求解一个二次优化问题来最大化分类间隔。相比最初始版本采用的复杂且低效的二次规划求解方法,SMO算法通过优化求解两个α值来提高训练速度。同时还有进一步提高的空间。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-01 13:53:53  更:2022-01-01 13:54:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 23:33:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码