IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 卷积神经网络(CNN)之MNIST手写数字数据集的实现 -> 正文阅读

[人工智能]卷积神经网络(CNN)之MNIST手写数字数据集的实现

作者:recommend-item-box type_download clearfix

????????MNIST数据集是一个非常经典的手写数字识别的数据集,本人很多文章都是拿这个数据集来做示例,MNIST的具体介绍与用法可以参阅:

MNIST数据集手写数字识别(一)https://blog.csdn.net/weixin_41896770/article/details/119576575

MNIST数据集手写数字识别(二)https://blog.csdn.net/weixin_41896770/article/details/119710429

本章在前面介绍卷积层池化层的基础上,构造一个简单的卷积神经网络来看下这个学习效果怎么样。老规矩,先来一张CNN的网络构造图,直观清晰。我将把所有代码都贴出来分享给大家,算是对2021年整年的一个完美收尾。

在图像处理领域,基本都会使用到CNN,所以说掌握卷积神经网络就显得特别重要了。代码就是解释,有什么疑问的地方,欢迎留言交流。?

simple_convnet.py

import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient
import pickle

class SimpleConvNet:
    '''
	input_dim:输入数据形状(MNIST手写数字)
	conv_param:卷积层字典的超参数(滤波器数量、滤波器大小、填充、步幅)
    weight_init_std:权重的标准差
        指定'relu'或'he'的情况下设定“He的初始值”
        指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值”
    '''
    def __init__(self,input_dim=(1,28,28),conv_param={'filter_num':30,'filter_size':5,'pad':0,'stride':1},hidden_size=100,output_size=10,weight_init_std=0.01):
        filter_num=conv_param['filter_num']
        filter_size=conv_param['filter_size']
        filter_pad=conv_param['pad']
        filter_stride=conv_param['stride']
        input_size=input_dim[1]
        conv_output_size=(input_size-filter_size+2*filter_pad) / filter_stride+1
        pool_output_size=int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        #权重和偏置的初始化
        self.params={}
        self.params['W1']=weight_init_std * np.random.randn(filter_num,input_dim[0],filter_size,filter_size)
        self.params['b1']=np.zeros(filter_num)
        self.params['W2']=weight_init_std * np.random.randn(pool_output_size,hidden_size)
        self.params['b2']=np.zeros(hidden_size)
        self.params['W3']=weight_init_std * np.random.randn(hidden_size,output_size)
        self.params['b3']=np.zeros(output_size)

        #生成CNN的各层
        self.layers=OrderedDict()
        self.layers['Conv1']=Convolution(self.params['W1'],self.params['b1'],conv_param['stride'],conv_param['pad'])
        self.layers['Relu1']=Relu()
        self.layers['Pool1']=Pooling(pool_h=2,pool_w=2,stride=2)
        self.layers['Affine1']=Affine(self.params['W2'],self.params['b2'])
        self.layers['Relu2']=Relu()
        self.layers['Affine2']=Affine(self.params['W3'],self.params['b3'])

        self.last_layer=SoftmaxWithLoss()

    def predict(self,x):
        for layer in self.layers.values():
            x=layer.forward(x)

        return x

    def loss(self,x,t):
        y=self.predict(x)
        return self.last_layer.forward(y,t)

    def accuracy(self,x,t,batch_size=100):
        if t.ndim != 1 : t=np.argmax(t,axis=1)
        
        acc=0.0
        for i in range(int(x.shape[0] / batch_size)):
            tx=x[i*batch_size:(i+1)*batch_size]
            tt=t[i*batch_size:(i+1)*batch_size]
            y=self.predict(tx)
            y=np.argmax(y,axis=1)
            acc += np.sum(y == tt) 
        
        return acc / x.shape[0]

    def numerical_gradient(self,x,t):
        '''
		数值微分求梯度
        '''
        loss_w=lambda w: self.loss(x,t)

        grads={}
        for idx in (1,2,3):
            grads['W'+str(idx)]=numerical_gradient(loss_w,self.params['W'+str(idx)])
            grads['b'+str(idx)]=numerical_gradient(loss_w,self.params['b'+str(idx)])

        return grads

    def gradient(self,x,t):
        '''
		误差反向传播法求梯度
		'''
        # forward
        self.loss(x,t)

        # backward
        dout=1
        dout=self.last_layer.backward(dout)

        layers=list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout=layer.backward(dout)

        grads={}
        grads['W1'],grads['b1']=self.layers['Conv1'].dW,self.layers['Conv1'].db
        grads['W2'],grads['b2']=self.layers['Affine1'].dW,self.layers['Affine1'].db
        grads['W3'],grads['b3']=self.layers['Affine2'].dW,self.layers['Affine2'].db

        return grads
        
    def save_params(self,file_name="params.pkl"):
        params={}
        for key,val in self.params.items():
            params[key]=val
        with open(file_name,'wb') as f:
            pickle.dump(params,f)

    def load_params(self,file_name="params.pkl"):
        with open(file_name,'rb') as f:
            params=pickle.load(f)
        for key,val in params.items():
            self.params[key]=val

        for i,key in enumerate(['Conv1','Affine1','Affine2']):
            self.layers[key].W=self.params['W'+str(i+1)]
            self.layers[key].b=self.params['b'+str(i+1)]

layers.py

import numpy as np
from common.functions import *
from common.util import im2col,col2im

class Relu:
    def __init__(self):
        self.mask=None

    def forward(self,x):
        self.mask=(x<=0)
        out=x.copy()
        out[self.mask]=0

        return out

    def backward(self,dout):
        dout[self.mask]=0
        dx=dout

        return dx

class Sigmoid:
    def __init__(self):
        self.out=None

    def forward(self,x):
        out=sigmoid(x)
        self.out=out
        return out

    def backward(self,dout):
        dx=dout*(1.0-self.out)*self.out

        return dx

class Affine:
    def __init__(self,W,b):
        self.W=W
        self.b=b
        
        self.x=None
        self.original_x_shape=None
        # 权重和偏置参数的导数
        self.dW=None
        self.db=None

    def forward(self,x):
        # 对应张量
        self.original_x_shape=x.shape
        x=x.reshape(x.shape[0],-1)
        self.x=x

        out=np.dot(self.x,self.W)+self.b

        return out

    def backward(self,dout):
        dx=np.dot(dout,self.W.T)
        self.dW=np.dot(self.x.T,dout)
        self.db=np.sum(dout,axis=0)
        
        dx=dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量)
        return dx

class SoftmaxWithLoss:
    def __init__(self):
        self.loss=None
        self.y=None # softmax的输出
        self.t=None # 监督数据

    def forward(self,x,t):
        self.t=t
        self.y=softmax(x)
        self.loss=cross_entropy_error(self.y,self.t)
        
        return self.loss

    def backward(self,dout=1):
        batch_size=self.t.shape[0]
        if self.t.size== self.y.size: # 监督数据是one-hot-vector的情况
            dx=(self.y-self.t)/batch_size
        else:
            dx=self.y.copy()
            dx[np.arange(batch_size),self.t]-=1
            dx=dx/batch_size
        
        return dx

class Dropout:
    '''
    随机删除神经元
    self.mask:保存的是False和True的数组,False的值为0是删除的数据
	'''
    def __init__(self,dropout_ratio=0.5):
        self.dropout_ratio=dropout_ratio
        self.mask=None

    def forward(self,x,train_flg=True):
        if train_flg:
            self.mask=np.random.rand(*x.shape)>self.dropout_ratio
            return x*self.mask
        else:
            return x*(1.0-self.dropout_ratio)

    def backward(self,dout):
        return dout*self.mask

class BatchNormalization:
    '''批标准化处理'''
    def __init__(self,gamma,beta,momentum=0.9,running_mean=None,running_var=None):
        self.gamma=gamma
        self.beta=beta
        self.momentum=momentum
        self.input_shape=None # Conv层的情况下为4维,全连接层的情况下为2维  

        # 测试时使用的平均值和方差
        self.running_mean=running_mean
        self.running_var=running_var  
        
        # backward时使用的中间数据
        self.batch_size=None
        self.xc=None
        self.std=None
        self.dgamma=None
        self.dbeta=None

    def forward(self,x,train_flg=True):
        self.input_shape=x.shape
        if x.ndim != 2:
            N,C,H,W=x.shape
            x=x.reshape(N,-1)

        out=self.__forward(x,train_flg)
        
        return out.reshape(*self.input_shape)
            
    def __forward(self,x,train_flg):
        if self.running_mean is None:
            N,D=x.shape
            self.running_mean=np.zeros(D)
            self.running_var=np.zeros(D)
                        
        if train_flg:
            mu=x.mean(axis=0)
            xc=x-mu
            var=np.mean(xc**2,axis=0)
            std=np.sqrt(var+10e-7)
            xn=xc/std
            
            self.batch_size=x.shape[0]
            self.xc=xc
            self.xn=xn
            self.std=std
            self.running_mean=self.momentum*self.running_mean+(1-self.momentum)*mu
            self.running_var=self.momentum*self.running_var+(1-self.momentum)*var            
        else:
            xc=x-self.running_mean
            xn=xc/((np.sqrt(self.running_var+10e-7)))
            
        out=self.gamma*xn+self.beta 
        return out

    def backward(self,dout):
        if dout.ndim != 2:
            N,C,H,W=dout.shape
            dout=dout.reshape(N,-1)

        dx=self.__backward(dout)

        dx=dx.reshape(*self.input_shape)
        return dx

    def __backward(self,dout):
        dbeta=dout.sum(axis=0)
        dgamma=np.sum(self.xn*dout,axis=0)
        dxn=self.gamma*dout
        dxc=dxn/self.std
        dstd=-np.sum((dxn*self.xc)/(self.std*self.std),axis=0)
        dvar=0.5*dstd/self.std
        dxc += (2.0/self.batch_size)*self.xc*dvar
        dmu=np.sum(dxc,axis=0)
        dx=dxc-dmu/self.batch_size
        
        self.dgamma=dgamma
        self.dbeta=dbeta
        
        return dx

class Convolution:
    def __init__(self,W,b,stride=1,pad=0):
        self.W=W
        self.b=b
        self.stride=stride
        self.pad=pad
        
        # 中间数据(backward时使用)
        self.x=None   
        self.col=None
        self.col_W=None
        
        # 权重和偏置参数的梯度
        self.dW=None
        self.db=None

    def forward(self,x):
        FN,C,FH,FW=self.W.shape
        N,C,H,W=x.shape
        out_h=1+int((H+2*self.pad-FH)/self.stride)
        out_w=1+int((W+2*self.pad-FW)/self.stride)

        col=im2col(x,FH,FW,self.stride,self.pad)
        col_W=self.W.reshape(FN,-1).T

        out=np.dot(col,col_W)+self.b
        out=out.reshape(N,out_h,out_w,-1).transpose(0,3,1,2)

        self.x=x
        self.col=col
        self.col_W=col_W

        return out

    def backward(self,dout):
        FN,C,FH,FW=self.W.shape
        dout=dout.transpose(0,2,3,1).reshape(-1,FN)

        self.db=np.sum(dout,axis=0)
        self.dW=np.dot(self.col.T,dout)
        self.dW=self.dW.transpose(1,0).reshape(FN,C,FH,FW)

        dcol=np.dot(dout,self.col_W.T)
        dx=col2im(dcol,self.x.shape,FH,FW,self.stride,self.pad)

        return dx

class Pooling:
    def __init__(self,pool_h,pool_w,stride=1,pad=0):
        self.pool_h=pool_h
        self.pool_w=pool_w
        self.stride=stride
        self.pad=pad
        
        self.x=None
        self.arg_max=None

    def forward(self,x):
        N,C,H,W=x.shape
        out_h=int(1+(H-self.pool_h)/self.stride)
        out_w=int(1+(W-self.pool_w)/self.stride)

        col=im2col(x,self.pool_h,self.pool_w,self.stride,self.pad)
        col=col.reshape(-1,self.pool_h*self.pool_w)

        arg_max=np.argmax(col,axis=1)
        out=np.max(col,axis=1)
        out=out.reshape(N,out_h,out_w,C).transpose(0,3,1,2)

        self.x=x
        self.arg_max=arg_max

        return out

    def backward(self,dout):
        dout=dout.transpose(0,2,3,1)
        
        pool_size=self.pool_h*self.pool_w
        dmax=np.zeros((dout.size,pool_size))
        dmax[np.arange(self.arg_max.size),self.arg_max.flatten()]=dout.flatten()
        dmax=dmax.reshape(dout.shape+(pool_size,)) 
        
        dcol=dmax.reshape(dmax.shape[0]*dmax.shape[1]*dmax.shape[2],-1)
        dx=col2im(dcol,self.x.shape,self.pool_h,self.pool_w,self.stride,self.pad)
        
        return dx

trainer.py

import numpy as np
from common.optimizer import *

class Trainer:
    '''把前面用来训练的代码做一个类'''
    def __init__(self,network,x_train,t_train,x_test,t_test,epochs=20,mini_batch_size=100,optimizer='SGD',optimizer_param={'lr':0.01},evaluate_sample_num_per_epoch=None,verbose=True):
        self.network=network
        self.verbose=verbose#是否打印数据(调试或查看)
        self.x_train=x_train
        self.t_train=t_train
        self.x_test=x_test
        self.t_test=t_test
        self.epochs=epochs
        self.batch_size=mini_batch_size
        self.evaluate_sample_num_per_epoch=evaluate_sample_num_per_epoch
        
        optimizer_dict={'sgd':SGD,'momentum':Momentum,'nesterov':Nesterov,'adagrad':AdaGrad,'rmsprop':RMSprop,'adam':Adam}
        self.optimizer=optimizer_dict[optimizer.lower()](**optimizer_param)
        self.train_size=x_train.shape[0]
        self.iter_per_epoch=max(self.train_size/mini_batch_size,1)
        self.max_iter=int(epochs*self.iter_per_epoch)
        self.current_iter=0
        self.current_epoch=0
        
        self.train_loss_list=[]
        self.train_acc_list=[]
        self.test_acc_list=[]

    def train_step(self):
        batch_mask=np.random.choice(self.train_size,self.batch_size)
        x_batch=self.x_train[batch_mask]
        t_batch=self.t_train[batch_mask]
        grads=self.network.gradient(x_batch,t_batch)
        self.optimizer.update(self.network.params,grads)

        loss=self.network.loss(x_batch,t_batch)
        self.train_loss_list.append(loss)
        if self.verbose:print('训练损失值:'+str(loss))

        if self.current_iter%self.iter_per_epoch==0:
            self.current_epoch+=1

            x_train_sample,t_train_sample=self.x_train,self.t_train
            x_test_sample,t_test_sample=self.x_test,self.t_test
            if not self.evaluate_sample_num_per_epoch is None:
                t=self.evaluate_sample_num_per_epoch
                x_train_sample,t_train_sample=self.x_test[:t],self.t_test[:t]
            train_acc=self.network.accuracy(x_train_sample,t_train_sample)
            test_acc=self.network.accuracy(x_test_sample,t_test_sample) 
            self.train_acc_list.append(train_acc)
            self.test_acc_list.append(test_acc)

            if self.verbose:print('epoch:'+str(self.current_epoch)+',train acc:'+str(train_acc)+' | test acc:'+str(test_acc))
        self.current_iter+=1

    def train(self):
        for i in range(self.max_iter):
            self.train_step()
        test_acc=self.network.accuracy(self.x_test,self.t_test)

        if self.verbose:print('最终测试的正确率:'+str(format(test_acc,'.2%')))

util.py

import numpy as np
def smooth_curve(x):
    '''使得图形变得更光滑'''
    window_len=11
    s=np.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]]
    w=np.kaiser(window_len,2)
    y=np.convolve(w/w.sum(),s,mode='valid')
    return y[5:len(y)-5]

def shuffle_dataset(x,t):
    '''打乱数据集'''
    permutation=np.random.permutation(x.shape[0])
    x=x[permutation,:] if x.ndim == 2 else x[permutation,:,:,:]
    t=t[permutation]

    return x,t

def conv_output_size(input_size,filter_size,stride=1,pad=0):
    return (input_size+2*pad-filter_size) / stride+1

def im2col(input_data,filter_h,filter_w,stride=1,pad=0):
    '''
    四维转二维
    input_data : 由(数据量,通道,高,长)的4维数组构成的输入数据
    filter_h : 滤波器的高
    filter_w : 滤波器的长
    stride : 步幅
    pad : 填充
    '''
    N,C,H,W=input_data.shape
    out_h=(H+2*pad-filter_h)//stride+1
    out_w=(W+2*pad-filter_w)//stride+1

    img=np.pad(input_data,[(0,0),(0,0),(pad,pad),(pad,pad)],'constant')
    col=np.zeros((N,C,filter_h,filter_w,out_h,out_w))

    for y in range(filter_h):
        y_max=y+stride*out_h
        for x in range(filter_w):
            x_max=x+stride*out_w
            col[:,:,y,x,:,:]=img[:,:,y:y_max:stride,x:x_max:stride]

    col=col.transpose(0,4,5,1,2,3).reshape(N*out_h*out_w,-1)
    return col


def col2im(col,input_shape,filter_h,filter_w,stride=1,pad=0):
    '''
    input_shape : 输入数据的形状(例:(10,1,28,28))
    '''
    N,C,H,W=input_shape
    out_h=(H+2*pad-filter_h)//stride+1
    out_w=(W+2*pad-filter_w)//stride+1
    col=col.reshape(N,out_h,out_w,C,filter_h,filter_w).transpose(0,3,4,5,1,2)

    img=np.zeros((N,C,H+2*pad+stride-1,W+2*pad+stride-1))
    for y in range(filter_h):
        y_max=y+stride*out_h
        for x in range(filter_w):
            x_max=x+stride*out_w
            img[:,:,y:y_max:stride,x:x_max:stride] += col[:,:,y,x,:,:]

    return img[:,:,pad:H+pad,pad:W+pad]

optimizer.py

import numpy as np

class SGD:
    '''随机梯度下降法,lr是学习率'''
    def __init__(self,lr=0.01):
        self.lr=lr

    def update(self,params,grads):
        for i in params.keys():
            params[i]-=self.lr*grads[i]

class Momentum:
    '''动量SGD,模拟小球在地面滚动'''
    def __init__(self,lr=0.01,momentum=0.9):
        self.lr=lr
        self.momentum=momentum
        self.v=None

    def update(self,params,grads):
        if self.v is None:
            self.v={}
            for k,v in params.items():
                self.v[k]=np.zeros_like(v)
        for k in params.keys():
            self.v[k]=self.momentum*self.v[k]-self.lr*grads[k]
            params[k]+=self.v[k]

class AdaGrad:
    '''调节学习率的SGD'''
    def __init__(self,lr=0.01):
        self.lr=lr
        self.h=None

    def update(self,params,grads):
        if self.h is None:
            self.h={}
            for k,v in params.items():
                self.h[k]=np.zeros_like(v)
        for k in params.keys():
            self.h[k]=self.h[k]+grads[k]*grads[k]
            params[k]-=self.lr*grads[k]/(np.sqrt(self.h[k])+1e-7)#加一个微小值防止为0
		
class Adam:
    '''融合Momentum和AdaGrad'''
    def __init__(self,lr=0.01,beta1=0.9,beta2=0.999):
        self.lr=lr
        self.beta1=beta1
        self.beta2=beta2
        self.iter=0
        self.m=None
        self.v=None

    def update(self,params,grads):
        if self.m is None:
            self.m,self.v={},{}
            for k,v in params.items():
                self.m[k]=np.zeros_like(v)
                self.v[k]=np.zeros_like(v)
        self.iter+=1
        lr_t=self.lr*np.sqrt(1.0-self.beta2**self.iter)/(1.0-self.beta1**self.iter)
        for k in params.keys():
            self.m[k]=self.beta1*self.m[k]+(1-self.beta1)*grads[k]
            self.v[k]=self.beta2*self.v[k]+(1-self.beta2)*(grads[k]**2)
            params[k]-=lr_t*self.m[k]/(np.sqrt(self.v[k])+1e-7)	

class Nesterov:
    def __init__(self,lr=0.01,momentum=0.9):
        self.lr=lr
        self.momentum=momentum
        self.v=None

    def update(self,params,grads):
        if self.v is None:
            self.v={}
            for k,v in params.items():
                self.v[k]=np.zeros_like(v)

        for k in params.keys():
            self.v[k]=self.v[k]*self.momentum
            self.v[k]-=self.lr*grads[k]
            params[k]+=self.momentum*self.momentum*self.v[k]
            params[k]-=(1+self.momentum)*self.lr*grads[k]

	
class RMSprop:
    def __init__(self,lr=0.01,decay_rate=0.99):
        self.lr=lr
        self.decay_rate=decay_rate
        self.h=None

    def update(self,params,grads):
        if self.h is None:
            self.h={}
            for k,v in params.items():
                self.h[k]=np.zeros_like(v)

        for k in params.keys():
            self.h[k]=self.h[k]*self.decay_rate
            self.h[k]+=(1-self.decay_rate)*grads[k]*grads[k]
            params[k]-=self.lr*grads[k]/(np.sqrt(self.h[k])+1e-7)

?最后来测试下这个CNN的最终效果如何:

import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from simple_convnet import SimpleConvNet
from common.trainer import Trainer

#加载MNIST数据集,保持输入数据的形状,不做一维处理
(x_train,t_train),(x_test,t_test)=load_mnist(flatten=False)

#减少数据训练测试,节省时间
#x_train,t_train=x_train[:5000],t_train[:5000]
#x_test,t_test=x_test[:1000],t_test[:1000]

max_epochs=20

network=SimpleConvNet(input_dim=(1,28,28),conv_param={'filter_num': 30,'filter_size': 5,'pad': 0,'stride': 1},hidden_size=100,output_size=10,weight_init_std=0.01)

trainer=Trainer(network,x_train,t_train,x_test,t_test,epochs=max_epochs,mini_batch_size=100,optimizer='Adam',optimizer_param={'lr': 0.001},evaluate_sample_num_per_epoch=1000)
trainer.train()

#保存参数
network.save_params("params.pkl")
print("保存参数成功")

#绘制图形
markers={'train': 'o','test': 's'}
x=np.arange(max_epochs)
plt.plot(x,trainer.train_acc_list,marker='o',label='train',markevery=2)
plt.plot(x,trainer.test_acc_list,marker='s',label='test',markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0,1.0)
plt.legend(loc='lower right')
plt.show()

测试的正确率达到了99%左右,这在一个小型的卷积神经网络里面,已经是很不错的识别率了!?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-01 13:53:53  更:2022-01-01 13:56:21 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 20:22:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码