IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 智能优化算法:龙格-库塔优化算法 - 附代码 -> 正文阅读

[人工智能]智能优化算法:龙格-库塔优化算法 - 附代码

智能优化算法:龙格-库塔优化算法


摘要:龙格-库塔优化算法(Runge Kutta optimizer,RUN)是于2021年提出的一种新型智能优化算法,该算法基于龙格-库塔方法中提出的计算梯度搜索概念来指导寻优,具有寻优能力强,收敛速度快等特点。

1.算法原理

1.1 搜索机制

该算法的搜索机制基于RK方法,使用一组随机解搜索决策空间,并实现适当的全局和局部搜索。采用4阶RK方法。
S M = 1 6 ( x R K ) Δ x (1) SM=\frac{1}{6}(x_{RK})\Delta x\tag{1} SM=61?(xRK?)Δx(1)

x R K = k 1 + 2 k 2 + 2 k 3 + k 4 (2) x_{RK}=k_1+2k_2+2k_3+k_4 \tag{2} xRK?=k1?+2k2?+2k3?+k4?(2)

k 1 = 1 2 Δ x ( r a n d ? x w ? u ? x b ) (3) k_1=\frac{1}{2\Delta x}(rand*x_w-u*x_b)\tag{3} k1?=2Δx1?(rand?xw??u?xb?)(3)

u = r o u n d ( 1 + r a n d ) ? ( 1 ? r a n d ) (4) u=round(1+rand)*(1-rand)\tag{4} u=round(1+rand)?(1?rand)(4)

k 2 = 1 2 Δ x ( r a n d ( x w + r a n d 1 ? k 1 ? Δ x ) ? ( u x b + r a n d 2 ? k 1 Δ x ) ) (5) k_2=\frac{1}{2\Delta x}(rand(x_w+rand_1*k_1*\Delta x)-(ux_b+rand_2*k_1\Delta x))\tag{5} k2?=2Δx1?(rand(xw?+rand1??k1??Δx)?(uxb?+rand2??k1?Δx))(5)

k 3 = 1 2 Δ x ( r a n d ( x w + r a n d 1 ( k 2 / 2 ) Δ x ) ? ( u x b + r a n d 2 ( k 2 / 2 ) Δ x ) ) (6) k_3=\frac{1}{2\Delta x}(rand(x_w+rand_1(k_2/2)\Delta x)-(ux_b+rand_2(k_2/2)\Delta x))\tag{6} k3?=2Δx1?(rand(xw?+rand1?(k2?/2)Δx)?(uxb?+rand2?(k2?/2)Δx))(6)

k 4 = 1 2 Δ x ( r a n d ? ( x w + r a n d 1 k 3 Δ x ) ? ( u x b + r a n d 2 k 3 Δ x ) ) (7) k_4=\frac{1}{2\Delta x}(rand*(x_w+rand_1k_3\Delta x)-(ux_b+rand_2k_3\Delta x))\tag{7} k4?=2Δx1?(rand?(xw?+rand1?k3?Δx)?(uxb?+rand2?k3?Δx))(7)

Δ x = 2 ? r a n d ? ∣ S t p ∣ (8) \Delta x=2*rand*|Stp| \tag{8} Δx=2?rand?Stp(8)

S t p = r a n d ? ( ( x b ? r a n d ? x a v g ) + γ ) (9) Stp=rand*((x_b-rand*x_{avg})+\gamma) \tag{9} Stp=rand?((xb??rand?xavg?)+γ)(9)

γ = r a n d ? ( x n ? r a n d ? ( u ? l ) ? e x p ( ? 4 i / M a x i ) ) (10) \gamma=rand*(x_n-rand*(u-l)*exp(-4i/Max_i))\tag{10} γ=rand?(xn??rand?(u?l)?exp(?4i/Maxi?))(10)

其中 x b x_b xb? x w x_w xw?分别为种群的最优解和最差解。 r a n d 1 , r a n d 2 rand_1,rand_2 rand1?,rand2?为[0,1]之间的随机数。 x a v g x_{avg} xavg?为种群的平均值。 i i i为当前迭代次数, M a x i Max_i Maxi?为最大迭代次数。

1.2 位置更新

RUN算法的位置更新如式(11)所示
x n + 1 = { ( x c + r ? S F ? g ? x c ) + S F ? S M + u ? x s , i f ? r a n d < 0.5 ( x m + r ? S F ? g ? x m ) + S F ? S M + u ? x s ′ , e l s e (11) x_{n+1}=\begin{cases} (x_c+r*SF*g*x_c)+SF*SM+u*x_s,if \, rand<0.5\\ (x_m+r*SF*g*x_m)+SF*SM+u*x_s',else \end{cases}\tag{11} xn+1?={(xc?+r?SF?g?xc?)+SF?SM+u?xs?,ifrand<0.5(xm?+r?SF?g?xm?)+SF?SM+u?xs?,else?(11)

x s = r a n d n ? ( x m ? x c ) (12) x_s=randn*(x_m-x_c)\tag{12} xs?=randn?(xm??xc?)(12)

x s ′ = r a n d n ? ( x r 1 ? x r 2 ) (13) xs'=randn*(x_{r1}-x_{r2})\tag{13} xs=randn?(xr1??xr2?)(13)

中, r r r是1或-1的整数; g g g是[0,2]的随机数; S F SF SF是自适应因子; u u u为随机数。

SF计算如下:
S F = 2 ? ( 0.5 ? r a n d ) ? f (13) SF=2*(0.5-rand)*f\tag{13} SF=2?(0.5?rand)?f(13)

f = a ? e x p ( ? b ? r a n d ? i / M a x i ) (14) f=a*exp(-b*rand*i/Max_i)\tag{14} f=a?exp(?b?rand?i/Maxi?)(14)

其中 i i i为当前迭代次数, M a x i Max_i Maxi?为最大迭代次数。 a a a b b b为一个常数。 r a n d rand rand为[0,1]之间的随机数。

x c x_c xc? x m x_m xm?的定义如下:
x c = φ x n + ( 1 ? φ ) ? x r 1 (15) x_c=\varphi x_n+(1-\varphi)*x_{r_1} \tag{15} xc?=φxn?+(1?φ)?xr1??(15)

x m = φ x b e s t + ( 1 ? φ ) x l b e s t (16) x_m=\varphi x_{best}+(1-\varphi)x_{lbest} \tag{16} xm?=φxbest?+(1?φ)xlbest?(16)

其中 φ \varphi φ为[0,1]之间的随机数; x b e s t x_{best} xbest?为全局最优解; x l b e s t x_{lbest} xlbest?是每代最优位置。

1.3 解质量增强(ESQ)

在该算法中,采用解质量增强(ESQ)的方法来提高解的质量,避免每次迭代中出现局部最优。通过使用ESQ执行以下公式产生新解( x n e w 2 x_{new2} xnew2?):
x n e w 2 = { x n e w 1 + r w ∣ ( x n e w 1 ? x a v g ) + r a n d n ∣ , r a n d < 0.5 , w < 1 ( x n e w 1 ? x a v g ) + r w ∣ ( u x n e w 1 ? x a v g ) + r a n d n ∣ , r a n d < 0.5 , w ≥ 1 (17) x_{new2}=\begin{cases} x_{new1}+rw|(x_{new_1}-x_{avg})+randn|,rand<0.5,w<1\\ (x_{new1}-x_{avg})+rw|(ux_{new1}-x_avg)+randn|,rand<0.5,w\geq 1 \end{cases}\tag{17} xnew2?={xnew1?+rw(xnew1???xavg?)+randn,rand<0.5,w<1(xnew1??xavg?)+rw(uxnew1??xa?vg)+randn,rand<0.5,w1?(17)
其中:
w = r a n d ( 0 , 2 ) ? e x p ( ? c i / M a x i ) (18) w=rand(0,2)*exp(-ci/Max_i) \tag{18} w=rand(0,2)?exp(?ci/Maxi?)(18)

x a v g = x r 1 + x r 2 + x r 3 3 (19) x_{avg}=\frac{x_{r1}+x_{r2}+x_{r3}}{3} \tag{19} xavg?=3xr1?+xr2?+xr3??(19)

x n e w 1 = β ? x a v g + ( 1 ? β ) x b e s t (20) x_{new1}=\beta*x_{avg}+(1-\beta)x_{best} \tag{20} xnew1?=β?xavg?+(1?β)xbest?(20)

其中, β \beta β为[0,1]之间随机数。 c c c为[0,5]之间随机数; r r r是1、0或-1的随机整数; x b e s t x_{best} xbest?表示全局最优位置。该部分计算的解 x n e w 2 x_{new2} xnew2?可能比不上当前解。为了增强解的质量,将生成另一个新解 x n e w 3 x_{new3} xnew3? ,定义如下:
x n e w 3 = ( x n e w 2 ? r a n d x n e w 2 ) + S F ( r a n d ? x R K + ( v x b ? x n e w 2 ) ) (21) x_{new3}=(x_{new2}-randx_{new2})+SF(rand*x_{RK}+(vx_b-x_{new2}))\tag{21} xnew3?=(xnew2??randxnew2?)+SF(rand?xRK?+(vxb??xnew2?))(21)
其中, v v v为2*rand的随机数。

算法伪代码如下:

Algorithm 1. The pseudo-code of RUN
Stage 1. Initialization
Initializea,b
Generate the RUN population X n (n = 1,2,…,N)
Calculate the objective function of each member of population
Determine the solutions x w , x b , andx best
Stage 2. RUN operators
for i = 1: Maxi
for n = 1 : N
for l = 1 : D
Calculate position x n+1,l  using Eq. (11)
end for
Enhance the solution quality
ifrand < 0.5
Calculate position x new2  using Eq. (17)
if f(x n ) < f(x new2 )
if rand<w
Calculate position x new3  using Eq. (21)
end
end
end
Update positions x w  andx b
end for
Update positionx best
i = i + 1
end
Stage 3. returnx best


2.实验结果

请添加图片描述

3.参考文献

[1] Iman Ahmadianfar, Ali Asghar Heidari, Amir H. Gandomi, Xuefeng Chu, Huiling Chen. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method[J]. Expert Systems with Applications, 2021, 181(115079): 0957-4174.

4.Matlab代码

d the metaphor: An efficient optimization algorithm based on Runge Kutta method[J]. Expert Systems with Applications, 2021, 181(115079): 0957-4174.

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-01 13:53:53  更:2022-01-01 13:56:34 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 20:49:35-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码