IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 图像处理Opencv(六) -> 正文阅读

[人工智能]图像处理Opencv(六)

图像梯度

梯度:
对于图像,我们选定一定范围(可能是点边界,线边界,闭合边界),对于边界到边界图像像素点像素值的变化我们称之为梯度。

Sobel算子

概念:
Sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测。Sobel算子是把图像中每个像素的上下左右四领域的灰度值加权差,在边缘处达到极值从而检测边缘。
Sobel算子不但产生较好的检测效果,而且对噪声具有平滑抑制作用,但是得到的边缘较粗,且可能出现伪边缘。

核心公式
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像, G x G_x Gx? G y G_y Gy?分别代表经横向及纵向边缘检测的图像,其公式如下:
在这里插入图片描述
前者 G x G_x Gx?用于计算水平梯度,而后者 G y G_y Gy?则用于计算垂直梯度。
注意:这里并不是矩阵的乘法,而是卷积即对应位置相乘运算。
图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。
在这里插入图片描述
然后可用以下公式计算梯度方向。
在这里插入图片描述
下面介绍Sobel算子的语法:

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

参数:src就是计算的图像,ddepth为图像的深度,dx,dy表示是水平方向还是竖直方向,ksize表示Sobel算子的大小即上述进行矩阵卷积运算的矩阵规格大小。
这里给大家展示以下图像经过梯度运算的效果:
原图像:
在这里插入图片描述

经过梯度运算

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)

得到的图像:
在这里插入图片描述
这里我们可以看到dx我们取为1dy取0表示进行的是进行水平梯度运算,而我们发现运算过后的图像“边缘”,好像仅有原图的一半。那是因为通过Sobel算子的公式我们可以看到,对于水平梯度计算简单的看做右边减左边,对于原图的左边缘,边缘左边为黑即像素值为0,右边为白即像素值为255,进行运算得到边缘的像素值为正,而对于右边边缘,右边边缘的左边为255右边为0,进行运算得到的像素值为负,而在Opencv中会默认做一个截断,即凡小于0的像素值均取0,所以右半边边缘经过梯度计算后全部为0即为黑色不做显示。

我们可以通过Opencv中取绝对值的方法来得到完整边缘,下面展示竖直方向取过绝对值之后的计算结果

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#竖直方向梯度计算
sobely = cv2.convertScaleAbs(sobely)  #取绝对值

在这里插入图片描述
这里是不建议dx与dy即水平与垂直同时进行计算,因为这两种计算的计算结果都会影响彼此,从而使进行梯度运算变得模糊,在直观上好像是水平梯度与竖直梯度“融合的不太好”。

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 

在这里插入图片描述
如果有需要我们可以直接通过Opencv自带的加权加法进行合并两图。

Scharr算子和laplacian算子

Scharr算子
Scharr算子整体思路与Sobel算子没有区别,但是在计算上Scharr算子公式中数值更大,更加注重规定方向的影响,弱化了边缘(矩阵边缘不是图像边缘)的影响。
Scharr算子的计算公式
在这里插入图片描述

laplacian算子
laplacian算子具体思想与推导比较复杂就不给大家做演示了,它与前面提到的算子主要区别是前面算子都停留在一阶导的层面,而laplacian算子中提到了二阶导,所以laplacian算子相比于前面的算子会对“变化”会更加敏感,展现出来“变化”较大的地方会更加明显,但是因为对变化过于敏感,所以对于噪音点laplacian算子处理就不是很好,所以laplacian算子通常不会单独使用。
由公式也可以看出laplacian算子更注重于变化而不是强调方位。
laplacian算子的计算公式
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-03 16:05:23  更:2022-01-03 16:05:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/10 20:25:07-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码