IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Adversarial Attack on Deep Cross-Modal Hamming Retrieval -> 正文阅读

[人工智能]Adversarial Attack on Deep Cross-Modal Hamming Retrieval

Adversarial Attack on Deep Cross-Modal Hamming Retrieval ICCV-2021

1 Introduction

近来,汉明空间的跨模态检索(Cross Modal Hamming Retrieval,CMHR)又到越来越多的关注,这主要得益于深度神经网络出色的表示能力。另一方面,深度网络的脆弱性使深度跨模态检索系统暴露于各种安全风险之下。然而,攻击深度跨模态汉明检索仍未得到充分的探索。所以本文中提出了一种有效的对深度交叉模态汉明检索的对抗性攻击(Adversarial Attack on Deep Cross-Modal Hamming Retrieval,AACH),它在黑盒设置中欺骗了目标深度CMHR模型。具体来说,给定一个目标模型,首先构造它的替代模型来利用汉明空间内的跨模态相关性,通过从目标模型中有限查询来创建对抗的例子。此外,为了提高对抗性攻击的效率,本文设计了一个三重构造模块来利用跨模态的正负实例。通过这种方式,可以通过将扰动实例拉离正实例而推向负实例来欺骗目标模型。

image-20220102195300410

2 Method

常规的跨模态检索任务是尽量使得一个实例与正样本的距离更小,和负样本的距离更大:

image-20220102200817633

而对于跨模态汉明攻击任务而言,其谜底是学习跨模态对抗扰动 δ v \delta^v δv来欺骗目标网络:

image-20220102200937614

2.1 AACH

image-20220102201229546

在黑盒攻击中,通常只能利用输入的M个数据对 { o v , o t } M \{o^v,o^t\}^M {ov,ot}M与目标玩过进行交互,M往往是被严格限制的。然后使用二进制编码 { B v , B t } \{B^v,B^t\} {Bv,Bt}来计算汉明距离 D ( B v , B t ) D(B^v,B^t) D(Bv,Bt)

随后选择单个模态的实例 o A v ( o A t ) o_A^v(o_A^t) oAv?(oAt?)最为锚点来分别选择对应的另一模态具有更小距离的正实例 o P t ( o P v ) o_P^t(o_P^v) oPt?(oPv?),和具有更大距离的负实例 o N t ( o N v ) o_N^t(o_N^v) oNt?(oNv?),构造出了跨模态三元组 { o A v , o P t , o N t } ( { o A t , o P v , o N v } ) \{o_A^v,o_P^t,o_N^t\}(\{o_A^t,o_P^v,o_N^v\}) {oAv?,oPt?,oNt?}({oAt?,oPv?,oNv?}),将用来训练代理跨模态网络来学习跨模态对抗样例。

以图像-查询-文本任务为例,为了训练代理的深度跨模态网络,本文设计了如下三元组损失:

image-20220102202601008

还有量化损失:

image-20220102202657030

所以image-20220102202819100,image-20220102202853104

在训练了代理深度跨模态网络后,开始创建跨模态对抗性的例子。同样,以图像查询文本任务为例,希望设计对抗图像样例 o A v ^ \hat{o_A^v} oAv?^?来学习扰动 δ v \delta^v δv加到原图片上: o A v ^ = o A v + δ v \hat{o_A^v}=o_A^v+\delta^v oAv?^?=oAv?+δv。此对抗样例应该远离正文本实例,但接近负文本实例:image-20220102203404045

量化损失:image-20220102203455690

所以学习对抗样本的损失为:image-20220102203558720image-20220102203704111

为了优化AACH,首先从目标模型中获得查询的二进制码,并构造跨模态三元组。然后对代理深度网络进行优化如下:

image-20220102204906754

最后,将 θ s u r v , θ s u r t \theta_{sur}^v,\theta_{sur}^t θsurv?,θsurt?固定,学习跨模态对抗性扰动,如下所示:

image-20220102205041275

3 Conclusion

image-20220102204148404

本文提出的AACH通过查询目标网络来构建一个代理模型与目标网络交互,而不需要任何关于目标网络的先验知识。在某种程度上,与最先进的方法相比,AACH在现实应用中更实用。此外,本文提出了一种新的三元组构造模块来,提高了负实例的学习效率,比较有现实意义。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-03 16:05:23  更:2022-01-03 16:08:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 22:46:08-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码