IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 手写KNN识别MNIST数据集(PyTorch读入数据) -> 正文阅读

[人工智能]手写KNN识别MNIST数据集(PyTorch读入数据)

I. KNN基本原理

关于KNN的基本原理可以参考我之前写的一篇文章:最简单的分类算法之一:KNN(原理解析+代码实现)

II. 数据处理

导入torchvision.datasets.MNIST数据集:

def load_data():
    dataset_train = torchvision.datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor())
    dataset_test = torchvision.datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor())
    data_train = dataset_train.data
    X_train = data_train.numpy()
    X_test = dataset_test.data.numpy()
    X_train = np.reshape(X_train, (60000, 784))
    X_test = np.reshape(X_test, (10000, 784))
    Y_train = dataset_train.targets.numpy()
    Y_test = dataset_test.targets.numpy()

    return X_train, Y_train, X_test, Y_test

训练集中含有60000条数据,测试集中含有10000条数据。任意输出一条数据:

print(X_train[0], Y_train[0])

结果为:

[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   3  18  18  18 126 136 175  26 166 255
 247 127   0   0   0   0   0   0   0   0   0   0   0   0  30  36  94 154
 170 253 253 253 253 253 225 172...] 5

x是一个维度为784的一维数组,y是标签。

III. 手写KNN

为了减少计算量,训练集长度改为30000,测试集长度改为1000。

def get_distance(x1, x2):
    return np.linalg.norm(x1 - x2)


def get_vec(K, x, train_x, train_y):
    res = []
    for i in range(len(train_x)):
        dis = get_distance(x, train_x[i])
        res.append([dis, train_y[i]])

    res = sorted(res, key=(lambda t: t[0]))

    return res[:K]


def knn(K):
    train_x, train_y, test_x, test_y = load_data()
    train_x, train_y, test_x, test_y = train_x[:30000], train_y[:30000], test_x[:1000], test_y[:1000]
    cnt = 0
    for i in range(len(test_x)):
        # print(i)
        x = test_x[i]
        y = test_y[i]
        vec = get_vec(K, x, train_x, train_y)
        weight = []  # 权重与序号
        sum_distance = 0.0
        for j in range(K):
            sum_distance += vec[j][0]  # 计算前K个距离的和
        for j in range(K):
            weight.append([1 - vec[j][0] / sum_distance, vec[j][1]])  # 权重+序号
        # 将相同序号的加起来
        num = []  # 统计有哪些序号
        for j in range(K):
            num.append(weight[j][1])
        num = list(set(num))  # 去重

        final_res = []
        for j in range(len(num)):
            res = 0.0
            for k in range(len(weight)):
                if weight[k][1] == num[j]:  # 前K个标签一样的样本权值加起来
                    res += weight[k][0]
            final_res.append([res, num[j]])

        final_res = sorted(final_res, key=(lambda e: e[0]), reverse=True)  # 按照权重从大到小排序

        if y == final_res[0][1]:
            cnt = cnt + 1
        print(y, final_res[0][1])

    print('accuracy:', cnt / len(test_x))


if __name__ == '__main__':
    K = 10
    knn(K)

在这里插入图片描述
如果想要提升精度,可以增加训练集容量。

IV. sklearn.KNeighborsClassifier

采用sklearn中的KNeighborsClassifier对数据进行训练和测试,此时训练集和测试集都包括完整的数据:

if __name__ == '__main__':
    K = 10
    train_x, train_y, test_x, test_y = load_data()
    knn = KNeighborsClassifier(n_neighbors=K)
    knn.fit(train_x, train_y)
    acc = knn.score(test_x, test_y)
    print('accuracy:', acc)

结果:
在这里插入图片描述

V. 完整代码

# -*- coding: utf-8 -*-
"""
@Time : 2022/1/7 21:28
@Author :KI 
@File :knn-mnist.py
@Motto:Hungry And Humble

"""
import numpy as np
import torchvision
import torchvision.transforms as transforms
from sklearn.neighbors import KNeighborsClassifier


def load_data():
    dataset_train = torchvision.datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor())
    dataset_test = torchvision.datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor())
    data_train = dataset_train.data
    X_train = data_train.numpy()
    X_test = dataset_test.data.numpy()
    X_train = np.reshape(X_train, (60000, 784))
    X_test = np.reshape(X_test, (10000, 784))
    Y_train = dataset_train.targets.numpy()
    Y_test = dataset_test.targets.numpy()

    return X_train, Y_train, X_test, Y_test


def get_distance(x1, x2):
    return np.linalg.norm(x1 - x2)


def get_vec(K, x, train_x, train_y):
    res = []
    for i in range(len(train_x)):
        dis = get_distance(x, train_x[i])
        res.append([dis, train_y[i]])

    res = sorted(res, key=(lambda t: t[0]))

    return res[:K]


def knn(K):
    train_x, train_y, test_x, test_y = load_data()
    train_x, train_y, test_x, test_y = train_x[:30000], train_y[:30000], test_x[:1000], test_y[:1000]
    cnt = 0
    for i in range(len(test_x)):
        # print(i)
        x = test_x[i]
        y = test_y[i]
        vec = get_vec(K, x, train_x, train_y)
        weight = []  # 权重与序号
        sum_distance = 0.0
        for j in range(K):
            sum_distance += vec[j][0]  # 计算前K个距离的和
        for j in range(K):
            weight.append([1 - vec[j][0] / sum_distance, vec[j][1]])  # 权重+序号
        # 将相同序号的加起来
        num = []  # 统计有哪些序号
        for j in range(K):
            num.append(weight[j][1])
        num = list(set(num))  # 去重

        final_res = []
        for j in range(len(num)):
            res = 0.0
            for k in range(len(weight)):
                if weight[k][1] == num[j]:  # 前K个标签一样的样本权值加起来
                    res += weight[k][0]
            final_res.append([res, num[j]])

        final_res = sorted(final_res, key=(lambda e: e[0]), reverse=True)  # 按照权重从大到小排序

        if y == final_res[0][1]:
            cnt = cnt + 1
        print(y, final_res[0][1])

    print('accuracy:', cnt / len(test_x))


if __name__ == '__main__':
    K = 10
    knn(K)
    # train_x, train_y, test_x, test_y = load_data()
    # knn = KNeighborsClassifier(n_neighbors=K)
    # knn.fit(train_x, train_y)
    # acc = knn.score(test_x, test_y)
    # print('accuracy:', acc)
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-01-08 14:00:00  更:2022-01-08 14:01:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 22:33:00-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码